Cycles, Transfers, and Motivic Homology Theories. (AM-143)

Download Cycles, Transfers, and Motivic Homology Theories. (AM-143) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691048150
Total Pages : 262 pages
Book Rating : 4.6/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Cycles, Transfers, and Motivic Homology Theories. (AM-143) by : Vladimir Voevodsky

Download or read book Cycles, Transfers, and Motivic Homology Theories. (AM-143) written by Vladimir Voevodsky and published by Princeton University Press. This book was released on 2000 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

Quadratic Forms, Linear Algebraic Groups, and Cohomology

Download Quadratic Forms, Linear Algebraic Groups, and Cohomology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441962115
Total Pages : 344 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Quadratic Forms, Linear Algebraic Groups, and Cohomology by : Skip Garibaldi

Download or read book Quadratic Forms, Linear Algebraic Groups, and Cohomology written by Skip Garibaldi and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.

Higher Segal Spaces

Download Higher Segal Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030271242
Total Pages : 230 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Higher Segal Spaces by : Tobias Dyckerhoff

Download or read book Higher Segal Spaces written by Tobias Dyckerhoff and published by Springer Nature. This book was released on 2019-10-17 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen’s S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.

Surveys on surgery theory : papers dedicated to C.T.C. Wall.

Download Surveys on surgery theory : papers dedicated to C.T.C. Wall. PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691088143
Total Pages : 452 pages
Book Rating : 4.0/5 (881 download)

DOWNLOAD NOW!


Book Synopsis Surveys on surgery theory : papers dedicated to C.T.C. Wall. by : Sylvain Cappell

Download or read book Surveys on surgery theory : papers dedicated to C.T.C. Wall. written by Sylvain Cappell and published by Princeton University Press. This book was released on 2000 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lecture Notes on Motivic Cohomology

Download Lecture Notes on Motivic Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821838471
Total Pages : 240 pages
Book Rating : 4.8/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Stable Homotopy Around the Arf-Kervaire Invariant

Download Stable Homotopy Around the Arf-Kervaire Invariant PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 376439904X
Total Pages : 250 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Stable Homotopy Around the Arf-Kervaire Invariant by : Victor P. Snaith

Download or read book Stable Homotopy Around the Arf-Kervaire Invariant written by Victor P. Snaith and published by Springer Science & Business Media. This book was released on 2009-03-28 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .

Noncommutative Motives

Download Noncommutative Motives PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470423979
Total Pages : 127 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Motives by : Gonçalo Tabuada

Download or read book Noncommutative Motives written by Gonçalo Tabuada and published by American Mathematical Soc.. This book was released on 2015-09-21 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.

99 Variations on a Proof

Download 99 Variations on a Proof PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691218978
Total Pages : 272 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis 99 Variations on a Proof by : Philip Ording

Download or read book 99 Variations on a Proof written by Philip Ording and published by Princeton University Press. This book was released on 2021-10-19 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.

Motivic Homotopy Theory

Download Motivic Homotopy Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540458972
Total Pages : 228 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas

Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

A Course in Hodge Theory

Download A Course in Hodge Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9781571464002
Total Pages : 0 pages
Book Rating : 4.4/5 (64 download)

DOWNLOAD NOW!


Book Synopsis A Course in Hodge Theory by : Hossein Movasati

Download or read book A Course in Hodge Theory written by Hossein Movasati and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an examination of the precursors of Hodge theory: first, the studies of elliptic and abelian integrals by Cauchy, Abel, Jacobi, and Riemann; and then the studies of two-dimensional multiple integrals by Poincare and Picard. The focus turns to the Hodge theory of affine hypersurfaces given by tame polynomials.

Noncommutative Geometry, Quantum Fields and Motives

Download Noncommutative Geometry, Quantum Fields and Motives PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470450453
Total Pages : 810 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes

Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Algebraic $K$-Theory

Download Algebraic $K$-Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082180927X
Total Pages : 330 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic $K$-Theory by : Wayne Raskind

Download or read book Algebraic $K$-Theory written by Wayne Raskind and published by American Mathematical Soc.. This book was released on 1999 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the Joint Summer Research Conference on Algebraic K-theory held at the University of Washington in Seattle. High-quality surveys are written by leading experts in the field. Included is an up-to-date account of Voevodsky's proof of the Milnor conjecture relating the Milnor K-theory of fields to Galois cohomology. The book is intended for graduate students and research mathematicians interested in $K$-theory, algebraic geometry, and number theory.

Handbook of K-Theory

Download Handbook of K-Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354023019X
Total Pages : 1148 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Handbook of K-Theory by : Eric Friedlander

Download or read book Handbook of K-Theory written by Eric Friedlander and published by Springer Science & Business Media. This book was released on 2005-07-18 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.

Triangulated Categories of Mixed Motives

Download Triangulated Categories of Mixed Motives PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303033242X
Total Pages : 442 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Triangulated Categories of Mixed Motives by : Denis-Charles Cisinski

Download or read book Triangulated Categories of Mixed Motives written by Denis-Charles Cisinski and published by Springer Nature. This book was released on 2019-11-09 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this monograph is to achieve part of Beilinson’s program on mixed motives using Voevodsky’s theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson’s program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky’s entire work and Grothendieck’s SGA4, our main sources are Gabber’s work on étale cohomology and Ayoub’s solution to Voevodsky’s cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck’ six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, étale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.

Periods and Nori Motives

Download Periods and Nori Motives PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319509268
Total Pages : 381 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Periods and Nori Motives by : Annette Huber

Download or read book Periods and Nori Motives written by Annette Huber and published by Springer. This book was released on 2017-03-08 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.

A1-Algebraic Topology over a Field

Download A1-Algebraic Topology over a Field PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642295142
Total Pages : 267 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis A1-Algebraic Topology over a Field by : Fabien Morel

Download or read book A1-Algebraic Topology over a Field written by Fabien Morel and published by Springer. This book was released on 2012-07-13 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

Problems on Mapping Class Groups and Related Topics

Download Problems on Mapping Class Groups and Related Topics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821838385
Total Pages : 384 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Problems on Mapping Class Groups and Related Topics by : Benson Farb

Download or read book Problems on Mapping Class Groups and Related Topics written by Benson Farb and published by American Mathematical Soc.. This book was released on 2006-09-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.