Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Convergence Problems Of Orthogonal Series
Download Convergence Problems Of Orthogonal Series full books in PDF, epub, and Kindle. Read online Convergence Problems Of Orthogonal Series ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Convergence Problems of Orthogonal Series by : G. Alexits
Download or read book Convergence Problems of Orthogonal Series written by G. Alexits and published by Elsevier. This book was released on 2014-07-23 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convergence Problems of Orthogonal Series deals with the theory of convergence and summation of the general orthogonal series in relation to the general theory and classical expansions. The book reviews orthogonality, orthogonalization, series of orthogonal functions, complete orthogonal systems, and the Riesz-Fisher theorem. The text examines Jacobi polynomials, Haar's orthogonal system, and relations to the theory of probability using Rademacher's and Walsh's orthogonal systems. The book also investigates the convergence behavior of orthogonal series by methods belonging to the general theory of series. The text explains some Tauberian theorems and the classical Abel transform of the partial sums of a series which the investigator can use in the theory of orthogonal series. The book examines the importance of the Lebesgue functions for convergence problems, the generalization of the Walsh series, the order of magnitude of the Lebesgue functions, and the Lebesgue functions of the Cesaro summation. The text also deals with classical convergence problems in which general orthogonal series have limited significance as orthogonal expansions react upon the structural properties of the expanded function. This reaction happens under special assumptions concerning the orthogonal system in whose functions the expansion proceeds. The book can prove beneficial to mathematicians, students, or professor of calculus and advanced mathematics.
Book Synopsis Convergence Problems of Orthogonal Series by : György Alexits
Download or read book Convergence Problems of Orthogonal Series written by György Alexits and published by Pergamon. This book was released on 1961 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Method of Averaging in the Theory of Orthogonal Series and Some Problems in the Theory of Bases by : Sergeĭ Viktorovich Bochkarev
Download or read book A Method of Averaging in the Theory of Orthogonal Series and Some Problems in the Theory of Bases written by Sergeĭ Viktorovich Bochkarev and published by American Mathematical Soc.. This book was released on 1980 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Investigate various forms of convergence of Fourier series in general orthonormal systems as well as certain problems in the theory of bases" -- Introduction.
Book Synopsis Fourier Series In Orthogonal Polynomials by : Boris Osilenker
Download or read book Fourier Series In Orthogonal Polynomials written by Boris Osilenker and published by World Scientific. This book was released on 1999-04-01 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson-Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory.
Book Synopsis A Panorama of Hungarian Mathematics in the Twentieth Century, I by : Janos Horvath
Download or read book A Panorama of Hungarian Mathematics in the Twentieth Century, I written by Janos Horvath and published by Springer Science & Business Media. This book was released on 2010-06-28 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: A glorious period of Hungarian mathematics started in 1900 when Lipót Fejér discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume.
Book Synopsis Quantum Probability And Related Topics: Qp-pq (Volume Ix) by : Luigi Accardi
Download or read book Quantum Probability And Related Topics: Qp-pq (Volume Ix) written by Luigi Accardi and published by World Scientific. This book was released on 1994-12-16 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Probability and Related Topics is a series of volumes whose goal is to provide a picture of the state of the art in this rapidly growing field where classical probability, quantum physics and functional analysis merge together in an original synthesis which, for 20 years, has been enriching these three areas with new ideas, techniques and results.
Book Synopsis Orthogonal Polynomials by : Géza Freud
Download or read book Orthogonal Polynomials written by Géza Freud and published by Elsevier. This book was released on 2014-05-17 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szego's theory. This book is useful for those who intend to use it as reference for future studies or as a textbook for lecture purposes
Book Synopsis Geometric Aspects of Functional Analysis by : Joram Lindenstrauss
Download or read book Geometric Aspects of Functional Analysis written by Joram Lindenstrauss and published by Birkhäuser. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the sixth published volume of the Israel Seminar on Geometric Aspects of Functional Analysis. The previous volumes are 1983-84 published privately by Tel Aviv University 1985-86 Springer Lecture Notes, Vol. 1267 1986-87 Springer Lecture Notes, Vol. 1317 1987-88 Springer Lecture Notes, Vol. 1376 1989-90 Springer Lecture Notes, Vol. 1469 As in the previous vC!lumes the central subject of -this volume is Banach space theory in its various aspects. In view of the spectacular development in infinite-dimensional Banach space theory in recent years (like the solution of the hyperplane problem, the unconditional basic sequence problem and the distortion problem in Hilbert space) it is quite natural that the present volume contains substantially more contributions in this direction than the previous volumes. This volume also contains many important contributions in the "traditional directions" of this seminar such as probabilistic methods in functional analysis, non-linear theory, harmonic analysis and especially the local theory of Banach spaces and its connection to classical convexity theory in IRn. The papers in this volume are original research papers and include an invited survey by Alexander Olevskii of Kolmogorov's work on Fourier analysis (which was presented at a special meeting on the occasion of the 90th birthday of A. N. Kol mogorov). We are very grateful to Mrs. M. Hercberg for her generous help in many directions, which made the publication of this volume possible. Joram Lindenstrauss, Vitali Milman 1992-1994 Operator Theory: Advances and Applications, Vol.
Book Synopsis Encyclopaedia of Mathematics by : M. Hazewinkel
Download or read book Encyclopaedia of Mathematics written by M. Hazewinkel and published by Springer. This book was released on 2013-12-01 with total page 967 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 1993-01-31 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Book Synopsis Functional Analysis and Approximation by : P.L. Butzer
Download or read book Functional Analysis and Approximation written by P.L. Butzer and published by Birkhäuser. This book was released on 2013-03-07 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Proceedings form a record of the lectures presented at the interna tional Conference on Functional Analysis and Approximation held at the Ober wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of the 38 invited conference papers, as well as three papers subsequently submitted in writing. Further, there is a report devoted to new and unsolved problems, based on two special sessions of the conference. The present volume is the sixth Oberwolfach Conference in Birkhauser's ISNM series to be edited at Aachen *. It is once again devoted to more significant results obtained in the wide areas of approximation theory, harmonic analysis, functional analysis, and operator theory during the past three years. Many of the papers solicited not only outline fundamental advances in their fields but also focus on interconnections between the various research areas. The papers in the present volume have been grouped into nine chapters. Chapter I, on operator theory, deals with maps on positive semidefinite opera tors, spectral bounds of semigroup operators, evolution equations of diffusion type, the spectral theory of propagators, and generalized inverses. Chapter II, on functional analysis, contains papers on modular approximation, interpolation spaces, and unconditional bases.
Book Synopsis Nonparametric Functional Estimation by : B. L. S. Prakasa Rao
Download or read book Nonparametric Functional Estimation written by B. L. S. Prakasa Rao and published by Academic Press. This book was released on 2014-07-10 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.
Book Synopsis Approximation Theory and Spline Functions by : S.P. Singh
Download or read book Approximation Theory and Spline Functions written by S.P. Singh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: A NATO Advanced Study Institute on Approximation Theory and Spline Functions was held at Memorial University of Newfoundland during August 22-September 2, 1983. This volume consists of the Proceedings of that Institute. These Proceedings include the main invited talks and contributed papers given during the Institute. The aim of these lectures was to bring together Mathematicians, Physicists and Engineers working in the field. The lectures covered a wide range including ~1ultivariate Approximation, Spline Functions, Rational Approximation, Applications of Elliptic Integrals and Functions in the Theory of Approximation, and Pade Approximation. We express our sincere thanks to Professors E. W. Cheney, J. Meinguet, J. M. Phillips and H. Werner, members of the International Advisory Committee. We also extend our thanks to the main speakers and the invi ted speakers, whose contri butions made these Proceedings complete. The Advanced Study Institute was financed by the NATO Scientific Affairs Division. We express our thanks for the generous support. We wish to thank members of the Department of Mathematics and Statistics at MeMorial University who willingly helped with the planning and organizing of the Institute. Special thanks go to Mrs. Mary Pike who helped immensely in the planning and organizing of the Institute, and to Miss Rosalind Genge for her careful and excellent typing of the manuscript of these Proceedings.
Book Synopsis Inequalities and Extremal Problems in Probability and Statistics by : Iosif Pinelis
Download or read book Inequalities and Extremal Problems in Probability and Statistics written by Iosif Pinelis and published by Academic Press. This book was released on 2017-05-10 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequalities and Extremal Problems in Probability and Statistics: Selected Topics presents various kinds of useful inequalities that are applicable in many areas of mathematics, the sciences, and engineering. The book enables the reader to grasp the importance of inequalities and how they relate to probability and statistics. This will be an extremely useful book for researchers and graduate students in probability, statistics, and econometrics, as well as specialists working across sciences, engineering, financial mathematics, insurance, and mathematical modeling of large risks. - Teaches users how to understand useful inequalities - Applicable across mathematics, sciences, and engineering - Presented by a team of leading experts
Book Synopsis Introduction to Global Variational Geometry by : Demeter Krupka
Download or read book Introduction to Global Variational Geometry written by Demeter Krupka and published by Elsevier. This book was released on 2000-04-01 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles- First book on the geometric foundations of Lagrange structures- New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity- Basic structures and tools: global analysis, smooth manifolds, fibred spaces
Download or read book Canadian Mathematical Bulletin written by and published by . This book was released on 1963 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Integral and Discrete Transforms with Applications and Error Analysis by : Abdul Jerri
Download or read book Integral and Discrete Transforms with Applications and Error Analysis written by Abdul Jerri and published by CRC Press. This book was released on 2021-11-19 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference/text desribes the basic elements of the integral, finite, and discrete transforms - emphasizing their use for solving boundary and initial value problems as well as facilitating the representations of signals and systems.;Proceeding to the final solution in the same setting of Fourier analysis without interruption, Integral and Discrete Transforms with Applications and Error Analysis: presents the background of the FFT and explains how to choose the appropriate transform for solving a boundary value problem; discusses modelling of the basic partial differential equations, as well as the solutions in terms of the main special functions; considers the Laplace, Fourier, and Hankel transforms and their variations, offering a more logical continuation of the operational method; covers integral, discrete, and finite transforms and trigonometric Fourier and general orthogonal series expansion, providing an application to signal analysis and boundary-value problems; and examines the practical approximation of computing the resulting Fourier series or integral representation of the final solution and treats the errors incurred.;Containing many detailed examples and numerous end-of-chapter exercises of varying difficulty for each section with answers, Integral and Discrete Transforms with Applications and Error Analysis is a thorough reference for analysts; industrial and applied mathematicians; electrical, electronics, and other engineers; and physicists and an informative text for upper-level undergraduate and graduate students in these disciplines.