Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Conformal Quaternionic Contact Curvature And The Local Sphere Theorem
Download Conformal Quaternionic Contact Curvature And The Local Sphere Theorem full books in PDF, epub, and Kindle. Read online Conformal Quaternionic Contact Curvature And The Local Sphere Theorem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem by : Stefan P. Ivanov
Download or read book Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem written by Stefan P. Ivanov and published by World Scientific. This book was released on 2011 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland?Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot?Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well.
Book Synopsis Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem by : A. L. Carey
Download or read book Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem written by A. L. Carey and published by American Mathematical Soc.. This book was released on 2014-08-12 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
Book Synopsis Issues in General and Specialized Mathematics Research: 2011 Edition by :
Download or read book Issues in General and Specialized Mathematics Research: 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 1326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in General and Specialized Mathematics Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General and Specialized Mathematics Research. The editors have built Issues in General and Specialized Mathematics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General and Specialized Mathematics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Hokkaido Mathematical Journal written by and published by . This book was released on 2013 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Asymptotically Symmetric Einstein Metrics by : Olivier Biquard
Download or read book Asymptotically Symmetric Einstein Metrics written by Olivier Biquard and published by American Mathematical Soc.. This book was released on 2006 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The correspondence between Einstein metrics and their conformal boundaries has recently been the focus of great interest. This is particularly so in view of the relation with the physical theory of the AdS/CFT correspondence. In this book, this correspondence is seen in the wider context of asymptotically symmetric Einstein metrics, that is Einstein metrics whose curvature is asymptotic to that of a rank one symmetric space. There is an emphasis on the correspondence betweenEinstein metrics and geometric structures on their boundary at infinity: conformal structures, CR structures, and quaternionic contact structures introduced and studied in the book. Two new constructions of such Einstein metrics are given, using two different kinds of techniques: analytic methods toconstruct complete Einstein metrics, with a unified treatment of all rank one symmetric spaces, relying on harmonic analysis; algebraic methods (twistor theory) to construct local solutions of the Einstein equation near the boundary.
Book Synopsis Conformal Maps of a Riemannian Surface into the Space of Quaternions by : Dr. Jörg Richter
Download or read book Conformal Maps of a Riemannian Surface into the Space of Quaternions written by Dr. Jörg Richter and published by . This book was released on 1997-09-01 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present work, a coordinate-free way is suggested to handle conformal maps of a Riemannian surface into a space of constant curvature of maximum dimension 4, modeled on the non-commutative field of quaternions. This setup for the target space and the idea to treat differential 2-forms on Riemannian surfaces as quadratic functions on the tangent space, are the starting points for the development of the theory of conformal maps and in particular of conformal immersions. As a first result, very nice conditions for the conformality of immersions into 3- and 4-dimensional space-forms are deduced and a simple way to write the second fundamental form is found. If the target space is euclidean 3-space, an alternative approach is proposed by fixing a spin structure on the Riemannian surface. The problem of finding a local immersion is then reduced to that of solving a linear Dirac equation with a potential whose square is the Willmore integrand. This allows to make statements about the structure of the moduli space of conformal immersions and to derive a very nice criterion for a conformal immersion to be constrained Willmore. As an application the Dirac equation with constant potential over spheres and tori is solved. This yields explicit immersion formulae out of which there were produced pictures, the Dirac-spheres and -tori. These immersions have the property that their Willmore integrand generates a metric of vanishing and constant curvature, respectively. As a next step an affine immersion theory is developped. This means, one starts with a given conformal immersion into euclidean 3-space and looks for new ones in the same conformal class. This is called a spin-transformation and it leads one to solve an affine Dirac equation. Also, it is shown how the coordinate-dependent generalized Weierstrass representation fits into the present framework. In particular, it is now natural to consider the class of conformal immersions that admit new conformal immersions having the same potential. It turns out, that all geometrically interesting immersions admit such an isopotential spin-transformation and that this property of an immersion is even a conformal invariant of the ambient space. It is shown that conformal isothermal immersions generate both via their dual and via Darboux transformations non-trivial families of new isopotential conformal immersions. Similarly to this, conformal (constrained) Willmore immersions produce non-trivial families of isopotential immersions of which subfamilies are (constrained) Willmore again having even the same Willmore integral. Another observation is, that the Euler-Lagrange equation for the Willmore problem is the integrability condition for a quaternionic 1-form, which generates a conformal minimal immersions into hyperbolic 4-space. Vice versa, any such immersion determines a conformal Willmore immersion. As a consequence, there is a one-to-one correspondence between conformal minimal immersions into Lorentzian space and those into hyperbolic space, which generalizes to any dimension. There is also induced an action on conformal minimal immersions into hyperbolic 4-space. Another fact is, that conformal constant mean curvature (cmc) immersions into some 3-dimensional space form unveil to be isothermal and constrained Willmore. The reverse statement is true at least for tori. Finally a very simple proof of a theorem by R.Bryant concerning Willmore spheres is given. In the last part, time-dependent conformal immersions are considered. Their deformation formulae are computed and it is investigated under what conditions the flow commutes with Moebius transformations. The modified Novikov-Veselov flow is written down in a conformal invariant way and explicit deformation formulae for the immersion function itself and all of its invariants are given. This flow commutes with Moebius transformations. Its definition is coupled with a delta-bar problem, for which a solution is presented under special conditions. These are fulfilled at least by cmc immersions and by surfaces of revolution and the general flow formulae reduce to very nice formulae in these cases.
Book Synopsis Conformal Geometry of Surfaces in S4 and Quaternions by : Francis E. Burstall
Download or read book Conformal Geometry of Surfaces in S4 and Quaternions written by Francis E. Burstall and published by Springer. This book was released on 2004-10-19 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal geometry of surfaces recently developed by the authors leads to a unified understanding of algebraic curve theory and the geometry of surfaces on the basis of a quaternionic-valued function theory. The book offers an elementary introduction to the subject but takes the reader to rather advanced topics. Willmore surfaces in the foursphere, their Bäcklund and Darboux transforms are covered, and a new proof of the classification of Willmore spheres is given.
Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Geometry of Walker Manifolds by : Peter Gilkey
Download or read book The Geometry of Walker Manifolds written by Peter Gilkey and published by Springer Nature. This book was released on 2022-05-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds
Book Synopsis Handbook of Pseudo-Riemannian Geometry and Supersymmetry by : Vicente Cortés
Download or read book Handbook of Pseudo-Riemannian Geometry and Supersymmetry written by Vicente Cortés and published by European Mathematical Society. This book was released on 2010 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.
Book Synopsis Quaternions, Spinors, and Surfaces by : George Kamberov
Download or read book Quaternions, Spinors, and Surfaces written by George Kamberov and published by American Mathematical Soc.. This book was released on 2002 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many classical problems in pure and applied mathematics remain unsolved or partially solved. This book studies some of these questions by presenting new and important results that should motivate future research. Strong bookstore candidate.
Book Synopsis Conformal Dimension by : John M. Mackay
Download or read book Conformal Dimension written by John M. Mackay and published by American Mathematical Soc.. This book was released on 2010 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed for a potential reader of the book consists of a working knowledge of real and complex analysis on the level of first- and second-year graduate courses.
Book Synopsis Introduction to Möbius Differential Geometry by : Udo Hertrich-Jeromin
Download or read book Introduction to Möbius Differential Geometry written by Udo Hertrich-Jeromin and published by Cambridge University Press. This book was released on 2003-08-14 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the geometry of surfaces and submanifolds in the conformal n-sphere.
Book Synopsis Differential Geometry and Analysis on CR Manifolds by : Sorin Dragomir
Download or read book Differential Geometry and Analysis on CR Manifolds written by Sorin Dragomir and published by Springer Science & Business Media. This book was released on 2007-06-10 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form Explains how certain results from analysis are employed in CR geometry Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook Provides unproved statements and comments inspiring further study
Book Synopsis Geometric Science of Information by : Frank Nielsen
Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer Nature. This book was released on 2021-07-14 with total page 929 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 5th International Conference on Geometric Science of Information, GSI 2021, held in Paris, France, in July 2021. The 98 papers presented in this volume were carefully reviewed and selected from 125 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications. The papers are organized in the following topics: Probability and statistics on Riemannian Manifolds; sub-Riemannian geometry and neuromathematics; shapes spaces; geometry of quantum states; geometric and structure preserving discretizations; information geometry in physics; Lie group machine learning; geometric and symplectic methods for hydrodynamical models; harmonic analysis on Lie groups; statistical manifold and Hessian information geometry; geometric mechanics; deformed entropy, cross-entropy, and relative entropy; transformation information geometry; statistics, information and topology; geometric deep learning; topological and geometrical structures in neurosciences; computational information geometry; manifold and optimization; divergence statistics; optimal transport and learning; and geometric structures in thermodynamics and statistical physics.
Book Synopsis Lie Sphere Geometry by : Thomas E. Cecil
Download or read book Lie Sphere Geometry written by Thomas E. Cecil and published by Springer Science & Business Media. This book was released on 2007-11-26 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.