Probability for Machine Learning

Download Probability for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 319 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Probability for Machine Learning by : Jason Brownlee

Download or read book Probability for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-09-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.

Probability and Bayesian Modeling

Download Probability and Bayesian Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351030132
Total Pages : 553 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Probability and Bayesian Modeling by : Jim Albert

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Conditional Joint Probabilities

Download Conditional Joint Probabilities PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 28 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Conditional Joint Probabilities by : Irving I. Gringorten

Download or read book Conditional Joint Probabilities written by Irving I. Gringorten and published by . This book was released on 1978 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formerly, for the solution of the conditional probability of a single predictand, its equivalent normal deviate (END) was obtained, under the assumption of multivariate normality, by linear regression on the END's of the predictors. For the joint probability of two predictands, the approach is to find the two corresponding END's by the same method, but in addition, to find the conditional correlation coefficient between the predictands. Such correlation has proved to be the well-known partial correlation. In a few test examples, the conditional correlation has decreased significantly from the more basic unconditional correlation. However, the conditional correlation has remained large enough to make the conditional probabilities significantly higher than the mere product of the two marginal probabilities. (Author).

Introductory Statistics

Download Introductory Statistics PDF Online Free

Author :
Publisher :
ISBN 13 : 9781453388945
Total Pages : 0 pages
Book Rating : 4.3/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Introductory Statistics by : Douglas S. Shafer

Download or read book Introductory Statistics written by Douglas S. Shafer and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Probability

Download Introduction to Probability PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 188652923X
Total Pages : 544 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability by : Dimitri Bertsekas

Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

Probability and Conditional Expectation

Download Probability and Conditional Expectation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119243483
Total Pages : 728 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Probability and Conditional Expectation by : Rolf Steyer

Download or read book Probability and Conditional Expectation written by Rolf Steyer and published by John Wiley & Sons. This book was released on 2017-03-10 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Download Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781981369195
Total Pages : 670 pages
Book Rating : 4.3/5 (691 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Probability Theory and Mathematical Statistics - 3rd Edition by : Marco Taboga

Download or read book Lectures on Probability Theory and Mathematical Statistics - 3rd Edition written by Marco Taboga and published by Createspace Independent Publishing Platform. This book was released on 2017-12-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Introduction to Probability

Download Introduction to Probability PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466575573
Total Pages : 599 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability by : Joseph K. Blitzstein

Download or read book Introduction to Probability written by Joseph K. Blitzstein and published by CRC Press. This book was released on 2014-07-24 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Probability And Statistics For Economists

Download Probability And Statistics For Economists PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9813228830
Total Pages : 592 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Probability And Statistics For Economists by : Yongmiao Hong

Download or read book Probability And Statistics For Economists written by Yongmiao Hong and published by World Scientific Publishing Company. This book was released on 2017-11-02 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistics have been widely used in various fields of science, including economics. Like advanced calculus and linear algebra, probability and statistics are indispensable mathematical tools in economics. Statistical inference in economics, namely econometric analysis, plays a crucial methodological role in modern economics, particularly in empirical studies in economics.This textbook covers probability theory and statistical theory in a coherent framework that will be useful in graduate studies in economics, statistics and related fields. As a most important feature, this textbook emphasizes intuition, explanations and applications of probability and statistics from an economic perspective.

Introduction to Probability

Download Introduction to Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110824498X
Total Pages : 447 pages
Book Rating : 4.1/5 (82 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability by : David F. Anderson

Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Elementary Probability for Applications

Download Elementary Probability for Applications PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139480731
Total Pages : 255 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Elementary Probability for Applications by : Rick Durrett

Download or read book Elementary Probability for Applications written by Rick Durrett and published by Cambridge University Press. This book was released on 2009-07-31 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.

Practical Probabilistic Programming

Download Practical Probabilistic Programming PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352372
Total Pages : 650 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Practical Probabilistic Programming by : Avi Pfeffer

Download or read book Practical Probabilistic Programming written by Avi Pfeffer and published by Simon and Schuster. This book was released on 2016-03-29 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning

OpenIntro Statistics

Download OpenIntro Statistics PDF Online Free

Author :
Publisher :
ISBN 13 : 9781943450046
Total Pages : pages
Book Rating : 4.4/5 (5 download)

DOWNLOAD NOW!


Book Synopsis OpenIntro Statistics by : David Diez

Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.

All of Statistics

Download All of Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387217363
Total Pages : 446 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis All of Statistics by : Larry Wasserman

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Patterns, Predictions, and Actions: Foundations of Machine Learning

Download Patterns, Predictions, and Actions: Foundations of Machine Learning PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691233721
Total Pages : 321 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Patterns, Predictions, and Actions: Foundations of Machine Learning by : Moritz Hardt

Download or read book Patterns, Predictions, and Actions: Foundations of Machine Learning written by Moritz Hardt and published by Princeton University Press. This book was released on 2022-08-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.