Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Concentration Of Measure For The Analysis Of Randomized Algorithms
Download Concentration Of Measure For The Analysis Of Randomized Algorithms full books in PDF, epub, and Kindle. Read online Concentration Of Measure For The Analysis Of Randomized Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Concentration of Measure for the Analysis of Randomized Algorithms by : Devdatt P. Dubhashi
Download or read book Concentration of Measure for the Analysis of Randomized Algorithms written by Devdatt P. Dubhashi and published by Cambridge University Press. This book was released on 2009-06-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
Book Synopsis Concentration of Measure for the Analysis of Randomized Algorithms by : Devdatt P. Dubhashi
Download or read book Concentration of Measure for the Analysis of Randomized Algorithms written by Devdatt P. Dubhashi and published by Cambridge University Press. This book was released on 2009-06-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a coherent and unified account of classical and more advanced techniques for analyzing the performance of randomized algorithms.
Book Synopsis Concentration of Measure Inequalities in Information Theory, Communications, and Coding by : Maxim Raginsky
Download or read book Concentration of Measure Inequalities in Information Theory, Communications, and Coding written by Maxim Raginsky and published by . This book was released on 2014 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration of Measure Inequalities in Information Theory, Communications, and Coding focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding.
Book Synopsis Randomized Algorithms by : Rajeev Motwani
Download or read book Randomized Algorithms written by Rajeev Motwani and published by Cambridge University Press. This book was released on 1995-08-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students.
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis An Introduction to Matrix Concentration Inequalities by : Joel Tropp
Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.
Book Synopsis Probabilistic Methods for Algorithmic Discrete Mathematics by : Michel Habib
Download or read book Probabilistic Methods for Algorithmic Discrete Mathematics written by Michel Habib and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Book Synopsis Concentration Inequalities by : Stéphane Boucheron
Download or read book Concentration Inequalities written by Stéphane Boucheron and published by Oxford University Press. This book was released on 2013-02-07 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
Book Synopsis Foundations of Probabilistic Programming by : Gilles Barthe
Download or read book Foundations of Probabilistic Programming written by Gilles Barthe and published by Cambridge University Press. This book was released on 2020-12-03 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Book Synopsis Stochastic Inequalities and Applications by : Evariste Giné
Download or read book Stochastic Inequalities and Applications written by Evariste Giné and published by Birkhäuser. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentration inequalities, which express the fact that certain complicated random variables are almost constant, have proven of utmost importance in many areas of probability and statistics. This volume contains refined versions of these inequalities, and their relationship to many applications particularly in stochastic analysis. The broad range and the high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers in the above areas.
Author :Sanguthevar Rajasekaran Publisher :Springer Science & Business Media ISBN 13 :9780792369578 Total Pages :520 pages Book Rating :4.3/5 (695 download)
Book Synopsis Handbook of randomized computing. 1 by : Sanguthevar Rajasekaran
Download or read book Handbook of randomized computing. 1 written by Sanguthevar Rajasekaran and published by Springer Science & Business Media. This book was released on 2001 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes
Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Book Synopsis Bandit Algorithms by : Tor Lattimore
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Book Synopsis An Introduction to Measure Theory by : Terence Tao
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Book Synopsis High-Dimensional Statistics by : Martin J. Wainwright
Download or read book High-Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Book Synopsis Probability and Computing by : Michael Mitzenmacher
Download or read book Probability and Computing written by Michael Mitzenmacher and published by Cambridge University Press. This book was released on 2005-01-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Book Synopsis The Concentration of Measure Phenomenon by : Michel Ledoux
Download or read book The Concentration of Measure Phenomenon written by Michel Ledoux and published by American Mathematical Soc.. This book was released on 2001 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. This book offers the basic techniques and examples of the concentration of measure phenomenon. It presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications and product measures.