Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Computer Simulations Of Dislocations
Download Computer Simulations Of Dislocations full books in PDF, epub, and Kindle. Read online Computer Simulations Of Dislocations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computer Simulations of Dislocations by : Vasily Bulatov
Download or read book Computer Simulations of Dislocations written by Vasily Bulatov and published by Oxford University Press. This book was released on 2006-11-02 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a variety of methods for computer simulations of crystal defects in the form of "numerical recipes", complete with computer codes and analysis tools. By working through numerous case studies and problems, this book provides a useful starter kit for further method development in the computational materials sciences.
Book Synopsis Dislocations, Mesoscale Simulations and Plastic Flow by : Ladislas Kubin
Download or read book Dislocations, Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.
Book Synopsis Computer Simulations of Dislocations by : Vasily Bulatov
Download or read book Computer Simulations of Dislocations written by Vasily Bulatov and published by OUP Oxford. This book was released on 2006-11-02 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a broad collection of models and computational methods - from atomistic to continuum - applied to crystal dislocations. Its purpose is to help students and researchers in computational materials sciences to acquire practical knowledge of relevant simulation methods. Because their behavior spans multiple length and time scales, crystal dislocations present a common ground for an in-depth discussion of a variety of computational approaches, including their relative strengths, weaknesses and inter-connections. The details of the covered methods are presented in the form of "numerical recipes" and illustrated by case studies. A suite of simulation codes and data files is made available on the book's website to help the reader "to learn-by-doing" through solving the exercise problems offered in the book.
Book Synopsis Imperfections in Crystalline Solids by : Wei Cai
Download or read book Imperfections in Crystalline Solids written by Wei Cai and published by Cambridge University Press. This book was released on 2016-09-15 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLAB® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.
Book Synopsis Fundamental Aspects of Dislocation Interactions by : G. Kostorz
Download or read book Fundamental Aspects of Dislocation Interactions written by G. Kostorz and published by Elsevier. This book was released on 2013-09-03 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III covers the papers presented at a European Research Conference on Plasticity of Materials-Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III, held on August 30-September 4, 1992 in Ascona, Switzerland. The book focuses on the processes, technologies, reactions, transformations, and approaches involved in dislocation interactions. The selection first offers information on work softening and Hall-Petch hardening in extruded mechanically alloyed alloys and dynamic origin of dislocation structures in deformed solids. Discussions focus on stress-strain behavior in relation to composition, structure, and annealing; comparison of stress-strain curves with work softening theory; sweeping and trapping mechanism; and model of dipolar wall structure formation. The text then ponders on plastic instabilities and their relation to fracture and dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy. The book takes a look at misfit dislocation generation mechanisms in heterostructures and evolution of dislocation structure on the interfaces associated with diffusionless phase transitions. Discussions focus on dislocation representation of a wall of elastic domains; equation of equilibrium of an elastic domain; transformation of dislocations; and theoretical and experimental background. The selection is a valuable reference for readers interested in dislocation interactions.
Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Book Synopsis Generalized Continua and Dislocation Theory by : Carlo Sansour
Download or read book Generalized Continua and Dislocation Theory written by Carlo Sansour and published by Springer Science & Business Media. This book was released on 2012-05-27 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.
Book Synopsis Creep of Crystals by : Jean-Paul Poirier
Download or read book Creep of Crystals written by Jean-Paul Poirier and published by Cambridge University Press. This book was released on 1985-02-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook describes the physics of the plastic deformation of solids at high temperatures. It is directed at geologists or geophysicists interested in the high-temperature behaviour of crystals who wish to become acquainted with the methods of materials science in so far as they are useful to earth scientists. It explains the most important models and recent experimental results without losing the reader in the primary literature of materials science. In turn the book deals with the essential solid-state physics; thermodynamics and hydrostatics of creep; creep models and their applications in the geological sciences; diffusion creep; superplastic deformation and deformation enhanced by phase transformations. Five concluding chapters give experimental results for metals, ceramics and minerals. There are extensive bibliographies to aid further study.
Book Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger
Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2016-08-30 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
Book Synopsis Multiscale Modeling and Analysis for Materials Simulation by : Weizhu Bao
Download or read book Multiscale Modeling and Analysis for Materials Simulation written by Weizhu Bao and published by World Scientific. This book was released on 2012 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Institute for Mathematical Sciences at the National University of Singapore hosted a two-month research program on "Mathematical Theory and Numerical Methods for Computational Materials Simulation and Design" from 1 July to 31 August 2009. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects four expanded lecture notes with self-contained tutorials. They cover a number of aspects on multiscale modeling, analysis and simulations for problems arising from materials science including some critical components in computational prediction of materials properties such as the multiscale properties of complex materials, properties of defects, interfaces and material microstructures under different conditions, critical issues in developing efficient numerical methods and analytic frameworks for complex and multiscale materials models. This volume serves to inspire graduate students and researchers who choose to embark into original research work in these fields.
Book Synopsis Practical Genetic Algorithms by : Randy L. Haupt
Download or read book Practical Genetic Algorithms written by Randy L. Haupt and published by John Wiley & Sons. This book was released on 2004-07-30 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: * This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition
Book Synopsis Handbook of Materials Modeling by : Sidney Yip
Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
Book Synopsis Computational Statistical Mechanics by : W.G. Hoover
Download or read book Computational Statistical Mechanics written by W.G. Hoover and published by Elsevier. This book was released on 2012-12-02 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic dissipative flows through multifractal phase-space structures is illustrated with many examples from the recent literature. The book is well-suited for undergraduate courses in advanced thermodynamics, statistical mechanic and transport theory, and graduate courses in physics and chemistry.
Book Synopsis Applied Nanoindentation in Advanced Materials by : Atul Tiwari
Download or read book Applied Nanoindentation in Advanced Materials written by Atul Tiwari and published by John Wiley & Sons. This book was released on 2017-10-30 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
Book Synopsis Uncertainty Quantification in Multiscale Materials Modeling by : Yan Wang
Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Book Synopsis Molecular Modeling and Simulation by : Tamar Schlick
Download or read book Molecular Modeling and Simulation written by Tamar Schlick and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text