Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Computational Discovery On Jupyter
Download Computational Discovery On Jupyter full books in PDF, epub, and Kindle. Read online Computational Discovery On Jupyter ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computational Discovery on Jupyter by : Neil J. Calkin
Download or read book Computational Discovery on Jupyter written by Neil J. Calkin and published by SIAM. This book was released on 2023-11-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses Python to teach mathematics not found in the standard curriculum, so students learn a popular programming language as well as some interesting mathematics. Videos, images, programs, programming activities, pencil-and-paper activities, and associated Jupyter Notebooks accompany the text, and readers are encouraged to interact with and extend the material as well as contribute their own notebooks. Indeed, some of the material was created/discovered/invented/published first by the authors’ students. Useful pedagogical features include using an active learning approach with topics not typically found in a standard math curriculum; introducing concepts using programming, not proof, with the goal of preparing readers for the need for proof; and accompanying all activities with a full discussion. Computational Discovery on Jupyter is for upper-level high school and lower-level college students. Graduate students in mathematics will also find it of interest.
Book Synopsis Mathematics Education in the Age of Artificial Intelligence by : Philippe R. Richard
Download or read book Mathematics Education in the Age of Artificial Intelligence written by Philippe R. Richard and published by Springer Nature. This book was released on 2022-03-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the contribution of artificial intelligence for mathematics education. It provides concrete ideas supported by mathematical work obtained through dynamic international collaboration, and discusses the flourishing of new mathematics in the contemporary world from a sustainable development perspective. Over the past thirty years, artificial intelligence has gradually infiltrated all facets of society. When it is deployed in interaction with the human designer or user, AI certainly raises new ethical questions. But as soon as it aims to augment intelligence in a kind of human-machine partnership, it goes to the heart of knowledge development and the very performance of work. The proposed themes and the sections of the book address original issues relating to the creation of AI milieus to work on mathematics, to the AI-supported learning of mathematics and to the coordination of « usual » paper/pencil techniques and « new » AI-aided educational working spaces. The authors of the book and the coordinators of each section are all established specialists in mathematics didactics, mathematics and computer science. In summary, this book is a must-read for everyone interested in the teaching and learning of mathematics, and it concerns the interaction between the human and the machine in both directions. It contains ideas, questions and inspiration that invite to take up the challenge of Artificial Intelligence contributing to Mathematical Human Learning.
Book Synopsis First Symposium on Artificial Intelligence for Mathematics Education. Book of Abstracts (AI4ME 2020) by : Belén Palop del Río
Download or read book First Symposium on Artificial Intelligence for Mathematics Education. Book of Abstracts (AI4ME 2020) written by Belén Palop del Río and published by Ed. Universidad de Cantabria. This book was released on 2020-10-29 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: The digital revolution that we have experienced since the last quarter of the twentieth century has had some influence, yet to be analysed and extended, on the way mathematics is made, taught and learned. While the rate of innovation in these technologies is growing exponentially, the potential impact of most information technologies on mathematical education remains to be fully exploited. In particular, several authoritative voices point out that the technology that will most likely transform education in the coming years is artificial intelligence (AI). Interestingly, today AI is mainly associated with technologies to automate tasks and lower costs, thus serving primarily the interests of the political-administrative, industrial and commercial world. In this scenario, the world of education and, more specifically, didactics, appears at best as a mere user of AI techniques developed in other fields, forgetting that AI should play a much more relevant role here, serving the human being who is doing his work as a mathematician or who is learning mathematics. The AI4ME symposium at the International Centre for Mathematical Meetings (CIEM) in Castro Urdiales is a space for research and reflection to better understand the interconnected challenges of instrumental learning of mathematics and instrumental mathematics, taking advantage of the achievements and opportunities of Artificial Intelligence for Mathematical Education. This book of abstracts gathers the summaries of the talks presented at the symposium, as well as the conclusions of each of the four thematic groups.
Book Synopsis Computational Mathematics with SageMath by : P. Zimmermann
Download or read book Computational Mathematics with SageMath written by P. Zimmermann and published by SIAM. This book was released on 2018-12-10 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with and visualize some beautiful part of mathematics. --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.
Book Synopsis Doing Computational Social Science by : John McLevey
Download or read book Doing Computational Social Science written by John McLevey and published by SAGE. This book was released on 2021-12-15 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational approaches offer exciting opportunities for us to do social science differently. This beginner’s guide discusses a range of computational methods and how to use them to study the problems and questions you want to research. It assumes no knowledge of programming, offering step-by-step guidance for coding in Python and drawing on examples of real data analysis to demonstrate how you can apply each approach in any discipline. The book also: Considers important principles of social scientific computing, including transparency, accountability and reproducibility. Understands the realities of completing research projects and offers advice for dealing with issues such as messy or incomplete data and systematic biases. Empowers you to learn at your own pace, with online resources including screencast tutorials and datasets that enable you to practice your skills and get up to speed. For anyone who wants to use computational methods to conduct a social science research project, this book equips you with the skills, good habits and best working practices to do rigorous, high quality work.
Book Synopsis Genomics in the Cloud by : Geraldine A. Van der Auwera
Download or read book Genomics in the Cloud written by Geraldine A. Van der Auwera and published by O'Reilly Media. This book was released on 2020-04-02 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data in the genomics field is booming. In just a few years, organizations such as the National Institutes of Health (NIH) will host 50+ petabytes—or over 50 million gigabytes—of genomic data, and they’re turning to cloud infrastructure to make that data available to the research community. How do you adapt analysis tools and protocols to access and analyze that volume of data in the cloud? With this practical book, researchers will learn how to work with genomics algorithms using open source tools including the Genome Analysis Toolkit (GATK), Docker, WDL, and Terra. Geraldine Van der Auwera, longtime custodian of the GATK user community, and Brian O’Connor of the UC Santa Cruz Genomics Institute, guide you through the process. You’ll learn by working with real data and genomics algorithms from the field. This book covers: Essential genomics and computing technology background Basic cloud computing operations Getting started with GATK, plus three major GATK Best Practices pipelines Automating analysis with scripted workflows using WDL and Cromwell Scaling up workflow execution in the cloud, including parallelization and cost optimization Interactive analysis in the cloud using Jupyter notebooks Secure collaboration and computational reproducibility using Terra
Book Synopsis A Primer for Computational Biology by : Shawn T. O'Neil
Download or read book A Primer for Computational Biology written by Shawn T. O'Neil and published by . This book was released on 2017-12-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the "natural environment" of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful "pipe" operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.
Book Synopsis Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI by : Jeffrey Nichols
Download or read book Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI written by Jeffrey Nichols and published by Springer Nature. This book was released on 2020-12-22 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the revised selected papers of the 17th Smoky Mountains Computational Sciences and Engineering Conference, SMC 2020, held in Oak Ridge, TN, USA*, in August 2020. The 36 full papers and 1 short paper presented were carefully reviewed and selected from a total of 94 submissions. The papers are organized in topical sections of computational applications: converged HPC and artificial intelligence; system software: data infrastructure and life cycle; experimental/observational applications: use cases that drive requirements for AI and HPC convergence; deploying computation: on the road to a converged ecosystem; scientific data challenges. *The conference was held virtually due to the COVID-19 pandemic.
Book Synopsis Chemometrics and Cheminformatics in Aquatic Toxicology by : Kunal Roy
Download or read book Chemometrics and Cheminformatics in Aquatic Toxicology written by Kunal Roy and published by John Wiley & Sons. This book was released on 2022-01-06 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.
Book Synopsis Machine Learning with PyTorch and Scikit-Learn by : Sebastian Raschka
Download or read book Machine Learning with PyTorch and Scikit-Learn written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2022-02-25 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Book Synopsis Discovering Computer Science by : Jessen Havill
Download or read book Discovering Computer Science written by Jessen Havill and published by CRC Press. This book was released on 2020-10-12 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Havill's problem-driven approach introduces algorithmic concepts in context and motivates students with a wide range of interests and backgrounds." -- Janet Davis, Associate Professor and Microsoft Chair of Computer Science, Whitman College "This book looks really great and takes exactly the approach I think should be used for a CS 1 course. I think it really fills a need in the textbook landscape." -- Marie desJardins, Dean of the College of Organizational, Computational, and Information Sciences, Simmons University "Discovering Computer Science is a refreshing departure from introductory programming texts, offering students a much more sincere introduction to the breadth and complexity of this ever-growing field." -- James Deverick, Senior Lecturer, The College of William and Mary "This unique introduction to the science of computing guides students through broad and universal approaches to problem solving in a variety of contexts and their ultimate implementation as computer programs." -- Daniel Kaplan, DeWitt Wallace Professor, Macalester College Discovering Computer Science: Interdisciplinary Problems, Principles, and Python Programming is a problem-oriented introduction to computational problem solving and programming in Python, appropriate for a first course for computer science majors, a more targeted disciplinary computing course or, at a slower pace, any introductory computer science course for a general audience. Realizing that an organization around language features only resonates with a narrow audience, this textbook instead connects programming to students’ prior interests using a range of authentic problems from the natural and social sciences and the digital humanities. The presentation begins with an introduction to the problem-solving process, contextualizing programming as an essential component. Then, as the book progresses, each chapter guides students through solutions to increasingly complex problems, using a spiral approach to introduce Python language features. The text also places programming in the context of fundamental computer science principles, such as abstraction, efficiency, testing, and algorithmic techniques, offering glimpses of topics that are traditionally put off until later courses. This book contains 30 well-developed independent projects that encourage students to explore questions across disciplinary boundaries, over 750 homework exercises, and 300 integrated reflection questions engage students in problem solving and active reading. The accompanying website — https://www.discoveringcs.net — includes more advanced content, solutions to selected exercises, sample code and data files, and pointers for further exploration.
Book Synopsis Foundations of Applied Mathematics, Volume I by : Jeffrey Humpherys
Download or read book Foundations of Applied Mathematics, Volume I written by Jeffrey Humpherys and published by SIAM. This book was released on 2017-07-07 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?
Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant
Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Author :Mark E. J. Newman Publisher :Createspace Independent Publishing Platform ISBN 13 :9781480145511 Total Pages :0 pages Book Rating :4.1/5 (455 download)
Book Synopsis Computational Physics by : Mark E. J. Newman
Download or read book Computational Physics written by Mark E. J. Newman and published by Createspace Independent Publishing Platform. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.
Book Synopsis The Cathedral & the Bazaar by : Eric S. Raymond
Download or read book The Cathedral & the Bazaar written by Eric S. Raymond and published by "O'Reilly Media, Inc.". This book was released on 2001-02-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open source provides the competitive advantage in the Internet Age. According to the August Forrester Report, 56 percent of IT managers interviewed at Global 2,500 companies are already using some type of open source software in their infrastructure and another 6 percent will install it in the next two years. This revolutionary model for collaborative software development is being embraced and studied by many of the biggest players in the high-tech industry, from Sun Microsystems to IBM to Intel.The Cathedral & the Bazaar is a must for anyone who cares about the future of the computer industry or the dynamics of the information economy. Already, billions of dollars have been made and lost based on the ideas in this book. Its conclusions will be studied, debated, and implemented for years to come. According to Bob Young, "This is Eric Raymond's great contribution to the success of the open source revolution, to the adoption of Linux-based operating systems, and to the success of open source users and the companies that supply them."The interest in open source software development has grown enormously in the past year. This revised and expanded paperback edition includes new material on open source developments in 1999 and 2000. Raymond's clear and effective writing style accurately describing the benefits of open source software has been key to its success. With major vendors creating acceptance for open source within companies, independent vendors will become the open source story in 2001.
Book Synopsis Machine Learning and Deep Learning in Computational Toxicology by : Huixiao Hong
Download or read book Machine Learning and Deep Learning in Computational Toxicology written by Huixiao Hong and published by Springer Nature. This book was released on 2023-03-11 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning and deep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students. The main benefit for the readers is understanding the widely used machine learning and deep learning techniques and gaining practical procedures for applying machine learning and deep learning in predictive toxicology.
Book Synopsis European Guide to Power System Testing by : Thomas I. Strasser
Download or read book European Guide to Power System Testing written by Thomas I. Strasser and published by Springer Nature. This book was released on 2020-06-11 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an open access book. This book provides an overview of the ERIGrid validation methodology for validating CPES, a holistic power system testing method. It introduces readers to corresponding simulation and laboratory-based tools, including co-simulation, real-time simulation, and hardware-in-the-loop. Selected test cases and validation examples are provided, in order to support the theory discussed. The book begins with an introduction to current power system testing methods and an overview of the ERIGrid system-level validation approach. It then moves on to discuss various validation methods, concepts and tools, including simulation and laboratory-based assessment methods. The book presents test cases and validation examples of the proposed methodologies and summarises the lessons learned from the holistic validation approach. In the final section of the book, the educational aspects of these methods, the outlook for the future, and overall conclusions are discussed. Given its scope, the book will be of interest to researchers, engineers, and laboratory personnel in the fields of power systems and smart grids, as well as undergraduate and graduate students studying related engineering topics.