Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3-D Stereo-Particle Image Velocimetry and Liquid Crystals

Download Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3-D Stereo-Particle Image Velocimetry and Liquid Crystals PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3-D Stereo-Particle Image Velocimetry and Liquid Crystals by : Daisy Galeana

Download or read book Computational and Experimental Investigation of Vortex Cooling of a Gas Turbine Blade Using 3-D Stereo-Particle Image Velocimetry and Liquid Crystals written by Daisy Galeana and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The limiting factor for most gas turbines has been the turbine inlet temperature. Furthermore, higher pressure ratios and turbine inlet temperatures improve the efficiencies on the gas turbine. A big focus has been on new schemes of internal cooling designs of turbine blades, using pressurized air from the engine compressor, and break-through in blade metallurgy, in order to achieve higher turbine inlet temperatures. Significant research has been ongoing for decades to design an internal cooling system for the first stage of the turbine blade consequently higher turbine inlet temperatures can be achieved. The challenging engineering intricacies related to improving the efficiency of a gas turbine engine come with the need to maximize the efficiency of the internal cooling of the turbine blade to withstand the high turbine inlet temperature. Understanding the fluid mechanics and heat transfer of internal blade cooling is therefore of paramount importance. This dissertation presents the impact of swirl flow cooling on the heat transfer of a gas turbine blade cooling passage to understand the mechanics of internal blade cooling. The focus is the continuous cooling flow that must be maintained via nonstop injection of tangential flow, whereby swirl flow is generated. The experimental investigation is presented first with three-dimensional (3-D) Stereo-Particle Image Velocimetry (Stereo-PIV) and second Thermochromic Liquid Crystal (TLC) of a swirl flow that models a gas turbine blade internal cooling configuration. The study is intended to provide an evaluation of the developments of swirl flow cooling methodology utilizing 3-D Stereo-PIV and liquid crystals. The objective of the experimental models is to determine the critical swirl number that has the potential to deliver the maximum axial velocity results with the highest heat transfer at three different Reynolds numbers, 7,000, 14,000, and 21,000. The swirl flow cooling methodology comprises of cooling air channeling through the blade's internal passages lowering the metal temperature, therefore the experimental cylindrical chamber is made of acrylic allowing detailed measurements and includes seven discrete tangential air inlets designed to create the swirl flow. Additionally, a 3D domain fluent setup employing a steady-state pressure-based solver with a standard k-epsilon turbulence model was applied. The energy equations were activated to handle the temperature effect; the gravitational acceleration is accounted for. Important variations of the swirl number are present near the air inlets and decrease with downstream distance as predicted since the second half of the chamber has no more inlets. The axial velocity reaches the maximum downstream in the second half of the chamber. The circumferential velocity decreases downstream distance and reaches the highest towards the center of the chamber. As part of the results relatively low heat transfer rates were observed near the upstream end of the cylindrical chamber, resulting from a low momentum swirl flow as well as crossflow effects. The TLC heat transfer results exemplify how the Nusselt Number (Nu) measured favorably at the midstream of the chamber and values decline downstream. Furthermore, experimental results when compared to the Computational Fluid Dynamics analysis are compatible with each other.

Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

Download Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 30 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage by : Louis M. Russell

Download or read book Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage written by Louis M. Russell and published by . This book was released on 1997 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45 000, 335 000, and 726 000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45 000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335 000 and 726 000 compared well with the more standard method of measuring pressures by using discrete holes.

Experimental and Computational Investigation of Flow in Gas Turbine Blade Cooling Passages

Download Experimental and Computational Investigation of Flow in Gas Turbine Blade Cooling Passages PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Experimental and Computational Investigation of Flow in Gas Turbine Blade Cooling Passages by : Harald Roclawski

Download or read book Experimental and Computational Investigation of Flow in Gas Turbine Blade Cooling Passages written by Harald Roclawski and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Gas Turbine Blade Cooling

Download Gas Turbine Blade Cooling PDF Online Free

Author :
Publisher : SAE International
ISBN 13 : 0768095026
Total Pages : 238 pages
Book Rating : 4.7/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Gas Turbine Blade Cooling by : Chaitanya D Ghodke

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade

Download Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 32 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade by : Eugene F. Schum

Download or read book Analytical and Experimental Investigation of a Forced-convection Air-cooled Internal Strut-supported Turbine Blade written by Eugene F. Schum and published by . This book was released on 1954 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt:

International Aerospace Abstracts

Download International Aerospace Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 944 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis International Aerospace Abstracts by :

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1996 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine

Download Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 78 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine by : Herman H. Ellerbrock (Jr.)

Download or read book Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine written by Herman H. Ellerbrock (Jr.) and published by . This book was released on 1951 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades

Download Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 44 pages
Book Rating : 4.3/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades by : Ernst Rudolf Georg Eckert

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling

Download An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (585 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling by : Jungho Choi

Download or read book An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling written by Jungho Choi and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This experimental study contains two points; part 1 - turbine blade heat transfer under low Reynolds number flow conditions, and part 2 - trailing edge cooling and heat transfer. The effect of unsteady wake and free stream turbulence on heat transfer and pressure coefficients of a turbine blade was investigated in low Reynolds number flows. The experiments were performed on a five blade linear cascade in a low speed wind tunnel. A spoked wheel type wake generator and two different turbulence grids were employed to generate different levels of the Strouhal number and turbulence intensity, respectively. The cascade inlet Reynolds number based on blade chord length was varied from 15,700 to 105,000, and the Strouhal number was varied from 0 to 2.96 by changing the rotating wake passing frequency (rod speed) and cascade inlet velocity. A thin foil thermocouple instrumented blade was used to determine the surface heat transfer coefficient. A Liquid crystal technique based on hue value detection was used to measure the heat transfer coefficient on a trailing edge film cooling model and internal model of a gas turbine blade. It was also used to determine the film effectiveness on the trailing edge. For the internal model, Reynolds numbers based on the hydraulic diameter of the exit slot and exit velocity were 5,000, 10,000, 20,000, and 30,000 and corresponding coolant-to-mainstream velocity ratios were 0.3, 0.6, 1.2, and 1.8 for the external models, respectively. The experiments were performed at two different designs and each design has several different models such as staggered / inline exit, straight / tapered entrance, and smooth / rib entrance. The compressed air was used in coolant air. A circular turbulence grid was employed to upstream in the wind tunnel and square ribs were employed in the inlet chamber to generate turbulence intensity externally and internally, respectively.

Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades

Download Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades by : Zhihong Gao

Download or read book Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades written by Zhihong Gao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The hot gas temperature in gas turbine engines is far above the permissible metal temperatures. Advanced cooling technologies must be applied to cool the blades, so they can withstand the extreme conditions. Film cooling is widely used in modern high temperature and high pressure blades as an active cooling scheme. In this study, the film cooling effectiveness in different regions of gas turbine blades was investigated with various film hole/slot configurations and mainstream flow conditions. The study consisted of four parts: 1) effect of upstream wake on blade surface film cooling, 2) effect of upstream vortex on platform purge flow cooling, 3) influence of hole shape and angle on leading edge film cooling and 4) slot film cooling on trailing edge. Pressure sensitive paint (PSP) technique was used to get the conduction-free film cooling effectiveness distribution. For the blade surface film cooling, the effectiveness from axial shaped holes and compound angle shaped holes were examined. Results showed that the compound angle shaped holes offer better film effectiveness than the axial shaped holes. The upstream stationary wakes have detrimental effect on film effectiveness in certain wake rod phase positions. For platform purge flow cooling, the stator-rotor gap was simulated by a typical labyrinth-like seal. Delta wings were used to generate vortex and modeled the passage vortex generated by the upstream vanes. Results showed that the upstream vortex reduces the film cooling effectiveness on the platform. For the leading edge film cooling, two film cooling designs, each with four film cooling hole configurations, were investigated. Results showed that the shaped holes provide higher film cooling effectiveness than the cylindrical holes at higher average blowing ratios. In the same range of average blowing ratio, the radial angle holes produce better effectiveness than the compound angle holes. The seven-row design results in much higher effectiveness than the three-row design. For the trailing edge slot cooling, the effect of slot lip thickness on film effectiveness under the two mainstream conditions was investigated. Results showed thinner lips offer higher effectiveness. The film effectiveness on the slots reduces when the incoming mainstream boundary layer thickness decreases.

Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade

Download Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade by : Mohamed Gaber Ghorab

Download or read book Experimental Investigation of Advanced Film Cooling Schemes for a Gas Turbine Blade written by Mohamed Gaber Ghorab and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced cooling techniques are essential for further improvement in the efficiency and the power output of gas turbines. Turbine inlet temperatures of 1900 K are typical of current gas turbines, and there is an interest in increasing the temperatures for the next generation of gas turbine engines. Over the past decades, significant effort has been devoted to increase the turbine efficiency and to develop effective cooling strategies to maintain the blade temperature below the melting point of the alloys used to construct the airfoils. As a result, various cooling strategies have been developed such as film, impingement, and muti-pass cooling for the blades, and evaporative cooling for the inlet air. In this work, a state-of-the-art thermal turbomachinery test rig was designed and constructed to investigate the film-cooling performance of advanced film cooling schemes over a flat plate. Designing and constructing mechanical parts, as well developing software codes (Labview and image processing) for transient film cooling measurement was the foremost part of the current experimental work. The thermochromic liquid crystal (TLC) technique was used to measure wall surface temperature. A circular film hole was used to validate the current experimental technique and methodology. The validation results showed that the current experimental technique and methodology were deemed reliable. Subsequently, the film cooling performance of the louver and new hybrid schemes were investigated, experimentally. The louver scheme was proposed by Pratt and Whitney Canada (PWC) to allow the cooling flow to pass through a bend and to encroach an airfoil material (impingement effect), then exit to the outer surface of the airfoil through a designed film hole. Immarigeon and Hassan (2006) then Zhang and Hassan (2006) numerically investigated the film cooling effectiveness performance of the louver scheme. The hybrid scheme was proposed in the current study, which includes two consecutive film hole configurations with interior bending. The cooling performances for the two advanced schemes have been analyzed experimentally over a flat plate across blowing ratios of 0.5, 1.0 and 1.5 at a density ratio of 0.94. The results showed that the louver and the hybrid schemes enhanced the local and the average film cooling performance in terms of film cooling effectiveness, and the net heat flux reductions are better than other published film hole configurations. In addition, both schemes provided an extensively wide spray of 'secondary flow over the outer surface, and thus enhanced the lateral film cooling performance over the downstream surface area. Moreover, the two schemes produced an average heat transfer coefficient ratio near unity at low and high blowing ratios. As a result, the louver and the hybrid schemes are expected to reduce the temperature of the outer surface of the gas turbine airfoil and to provide superior cooling performance, which increases airfoil lifetime. In addition, the adiabatic film cooling performance and flow characteristics for the hybrid scheme were investigated numerically. The numerical investigation was analyzed across blowing ratio, of 0.5, 1, and 2. The flow structures of the hybrid scheme are presented at different blowing ratios to provide a better physical understanding. The results showed that the hybrid scheme directed the secondary flow in the horizontal direction and reduced the jet liftoff at different blowing ratios. Finally, conjugate heat transfer (CHT) and film-cooling analyses were performed to investigate the hybrid scheme performance with different flow configurations. Different geometries of parallel flow and jet impingement with different gap heights as well as the adiabatic case study were investigated at blowing ratios of 0.5 and 1.0. The results showed that the adiabatic case provided downstream centerline superlative cooling performance near the hybrid film hole exit compared to other conjugate geometries studied. At the downstream location, the impingement configuration with a large gap height provided the highest downstream performance at blowing ratio of 0.5 and 1.0 with respect to other cases studied. Moreover, the downstream film cooling performance was enhanced far along the spanwise direction for the CHT cases studied and it has the highest value near the scheme exit for parallel configuration. In addition, the impingement configuration enhanced the upper stream cooling performance compared to parallel flow and it was further enhanced for large gap heights. Keywords: film cooling effectiveness, heat transfer coefficient ratio, louver, hybrid, TLC, NHFR, CHT.

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 14 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling by : James D. Heidmann

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1997 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part II - Numerical Simulations

Download Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part II - Numerical Simulations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part II - Numerical Simulations by : Diane M. McGrath

Download or read book Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part II - Numerical Simulations written by Diane M. McGrath and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

A Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage

Download A Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 192 pages
Book Rating : 4.3/5 (126 download)

DOWNLOAD NOW!


Book Synopsis A Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage by :

Download or read book A Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage written by and published by . This book was released on 1994 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage

Download A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781722891886
Total Pages : 190 pages
Book Rating : 4.8/5 (918 download)

DOWNLOAD NOW!


Book Synopsis A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage by : National Aeronautics and Space Administration (NASA)

Download or read book A Combined Experimental/Computational Study of Flow in Turbine Blade Cooling Passage written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser velocimetry was utilized to map the velocity field in a serpentine turbine blade cooling passage at Reynolds and Rotation numbers of up to 25.000 and 0.48. These results were used to assess the combined influence of passage curvature and Coriolis force on the secondary velocity field generated. A Navier-Stokes code (NASTAR) was validated against incompressible test data and then used to simulate the effect of buoyancy. The measurements show a net convection from the low pressure surface to high pressure surface. The interaction of the secondary flows induced by the turns and rotation produces swirl at the turns, which persisted beyond 2 hydraulic diameters downstream of the turns. The incompressible flow field predictions agree well with the measured velocities. With radially outward flow, the buoyancy force causes a further increase in velocity on the high pressure surface and a reduction on the low pressure surface. The results were analyzed in relation to the heat transfer measurements of Wagner et al. (1991). Predicted heat transfer is enhanced on the high pressure surfaces and in turns. The incompressible flow simulation underpredicts heat transfer in these locations. Improvements observed in compressible flow simulation indicate that the buoyancy force may be important. Tse, D. G. N. and Kreskovsky, J. P. and Shamroth, S. J. and Mcgrath, D. B. Unspecified Center BUOYANCY; CHANNEL FLOW; CONVECTIVE HEAT TRANSFER; COOLING; FLOW DISTRIBUTION; FLOW VELOCITY; TURBINE BLADES; COMPRESSIBLE FLOW; CORIOLIS EFFECT; INCOMPRESSIBLE FLOW; LASER DOPPLER VELOCIMETERS; NAVIER-STOKES EQUATION; REYNOLDS NUMBER; SECONDARY FLOW; VELOCITY DISTRIBUTION...

Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part I - Experimental Study

Download Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part I - Experimental Study PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (137 download)

DOWNLOAD NOW!


Book Synopsis Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part I - Experimental Study by : D. G. N. Tse

Download or read book Combined Experimental/computational Study of Flow in Turbine Blade Cooling Passage: Part I - Experimental Study written by D. G. N. Tse and published by . This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine

Download Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 56 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine by : Vernon L. Arne

Download or read book Experimental Investigation of Air-cooled Turbine Blades in Turbojet Engine written by Vernon L. Arne and published by . This book was released on 1951 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: