Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Component And Correspondence Analysis
Download Component And Correspondence Analysis full books in PDF, epub, and Kindle. Read online Component And Correspondence Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Practical Guide To Principal Component Methods in R by : Alboukadel KASSAMBARA
Download or read book Practical Guide To Principal Component Methods in R written by Alboukadel KASSAMBARA and published by STHDA. This book was released on 2017-08-23 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.
Book Synopsis Nonlinear Principal Component Analysis and Its Applications by : Yuichi Mori
Download or read book Nonlinear Principal Component Analysis and Its Applications written by Yuichi Mori and published by Springer. This book was released on 2016-12-09 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.
Book Synopsis Multiple Correspondence Analysis and Related Methods by : Michael Greenacre
Download or read book Multiple Correspondence Analysis and Related Methods written by Michael Greenacre and published by CRC Press. This book was released on 2006-06-23 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the su
Book Synopsis Biplots in Practice by : Michael J. Greenacre
Download or read book Biplots in Practice written by Michael J. Greenacre and published by Fundacion BBVA. This book was released on 2010 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Este libro explica las aplicaciones específicas y las interpretaciones del biplot en muchas áreas del análisis multivariante. regresión, modelos lineales generalizados, análisis de componentes principales, análisis de correspondencias y análisis discriminante.
Download or read book Metric Scaling written by Susan C. Weller and published by SAGE. This book was released on 1990 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a set of closely related techniques that facilitate the exploration and display of a wide variety of multivariate data, both categorical and continuous. Three methods of metric scaling, correspondence analysis, principal components analysis, and multiple dimensional preference scaling are explored in detail for strengths and weaknesses over a wide range of data types and research situations. "The introduction illustrates the methods with a small dataset. This approach is effective--in a few minutes, with no mathematical requirement, the reader can understand the capabilities, similarities, and differences of the methods. . . . Numerical examples facilitate learning. The authors use several examples with small datasets that illustrate very well the links and the differences between the methods. . . . we find this text very good and recommend it for graduate students and social science researchers, especially those who are interested in applying some of these methods and in knowing the relationship among them." --Journal of Marketing Research "Illustrate[s] the service Sage provides by making high-quality works on research methods available at modest prices. . . . The authors use several interesting examples of practical applications on data sets, ranging from contraception preferences, to pottery shards from archeological digs, to durable consumer goods from market research. These examples indicate the broad range of possible applications of the method to social science data." --Contemporary Sociology "The book is a bargain; it is clearly written." --Journal of Classification
Book Synopsis Principal Component Analysis by : I.T. Jolliffe
Download or read book Principal Component Analysis written by I.T. Jolliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Book Synopsis Visualization and Verbalization of Data by : Jorg Blasius
Download or read book Visualization and Verbalization of Data written by Jorg Blasius and published by CRC Press. This book was released on 2014-04-10 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications.The first part of the book explains
Book Synopsis Analyzing Ecological Data by : Alain Zuur
Download or read book Analyzing Ecological Data written by Alain Zuur and published by Springer. This book was released on 2007-08-29 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a practical introduction to analyzing ecological data using real data sets. The first part gives a largely non-mathematical introduction to data exploration, univariate methods (including GAM and mixed modeling techniques), multivariate analysis, time series analysis, and spatial statistics. The second part provides 17 case studies. The case studies include topics ranging from terrestrial ecology to marine biology and can be used as a template for a reader’s own data analysis. Data from all case studies are available from www.highstat.com. Guidance on software is provided in the book.
Book Synopsis Three-mode Principal Component Analysis by : Pieter M. Kroonenberg
Download or read book Three-mode Principal Component Analysis written by Pieter M. Kroonenberg and published by . This book was released on 1983 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Quantitative Methods in Archaeology Using R by : David L. Carlson
Download or read book Quantitative Methods in Archaeology Using R written by David L. Carlson and published by Cambridge University Press. This book was released on 2017-06-26 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first step-by-step guide to the quantitative analysis of archaeological data using the R statistical computing system.
Book Synopsis Correspondence Analysis in Practice by : Michael Greenacre
Download or read book Correspondence Analysis in Practice written by Michael Greenacre and published by CRC Press. This book was released on 2017-01-20 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing on the author’s 45 years of experience in multivariate analysis, Correspondence Analysis in Practice, Third Edition, shows how the versatile method of correspondence analysis (CA) can be used for data visualization in a wide variety of situations. CA and its variants, subset CA, multiple CA and joint CA, translate two-way and multi-way tables into more readable graphical forms — ideal for applications in the social, environmental and health sciences, as well as marketing, economics, linguistics, archaeology, and more. Michael Greenacre is Professor of Statistics at the Universitat Pompeu Fabra, Barcelona, Spain, where he teaches a course, amongst others, on Data Visualization. He has authored and co-edited nine books and 80 journal articles and book chapters, mostly on correspondence analysis, the latest being Visualization and Verbalization of Data in 2015. He has given short courses in fifteen countries to environmental scientists, sociologists, data scientists and marketing professionals, and has specialized in statistics in ecology and social science.
Book Synopsis Exploratory Multivariate Analysis by Example Using R by : Francois Husson
Download or read book Exploratory Multivariate Analysis by Example Using R written by Francois Husson and published by CRC Press. This book was released on 2017-04-25 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a
Book Synopsis Principal Components Analysis by : George H. Dunteman
Download or read book Principal Components Analysis written by George H. Dunteman and published by SAGE. This book was released on 1989-05 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: For anyone in need of a concise, introductory guide to principal components analysis, this book is a must. Through an effective use of simple mathematical-geometrical and multiple real-life examples (such as crime statistics, indicators of drug abuse, and educational expenditures) -- and by minimizing the use of matrix algebra -- the reader can quickly master and put this technique to immediate use.
Book Synopsis Applied Correspondence Analysis by : eric clausen sten
Download or read book Applied Correspondence Analysis written by eric clausen sten and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multiple Correspondence Analysis by : Brigitte Le Roux
Download or read book Multiple Correspondence Analysis written by Brigitte Le Roux and published by SAGE. This book was released on 2010 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Requiring no prior knowledge of correspondence analysis, this text provides anontechnical introduction to Multiple Correspondence Analysis (MCA) as a method in its own right. The authors, Brigitte Le Roux and Henry Rouanet, present the material in a practical manner, keeping the needs of researchers foremost in mind." "This supplementary text isappropriate for any graduate-level, intermediate, or advanced statistics course across the social and behavioral sciences, as well as forindividual researchers." --Book Jacket.
Book Synopsis Multiple Correspondence Analysis for the Social Sciences by : Johs. Hjellbrekke
Download or read book Multiple Correspondence Analysis for the Social Sciences written by Johs. Hjellbrekke and published by Routledge. This book was released on 2018-06-18 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple correspondence analysis (MCA) is a statistical technique that first and foremost has become known through the work of the late Pierre Bourdieu (1930–2002). This book will introduce readers to the fundamental properties, procedures and rules of interpretation of the most commonly used forms of correspondence analysis. The book is written as a non-technical introduction, intended for the advanced undergraduate level and onwards. MCA represents and models data sets as clouds of points in a multidimensional Euclidean space. The interpretation of the data is based on these clouds of points. In seven chapters, this non-technical book will provide the reader with a comprehensive introduction and the needed knowledge to do analyses on his/her own: CA, MCA, specific MCA, the integration of MCA and variance analysis, of MCA and ascending hierarchical cluster analysis and class-specific MCA on subgroups. Special attention will be given to the construction of social spaces, to the construction of typologies and to group internal oppositions. This is a book on data analysis for the social sciences rather than a book on statistics. The main emphasis is on how to apply MCA to the analysis of practical research questions. It does not require a solid understanding of statistics and/or mathematics, and provides the reader with the needed knowledge to do analyses on his/her own.
Book Synopsis The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis by : Todd D. Little
Download or read book The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis written by Todd D. Little and published by Oxford University Press. This book was released on 2013-02-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.