Classification and Regression Trees

Download Classification and Regression Trees PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 135146048X
Total Pages : 370 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Classification and Regression Trees by : Leo Breiman

Download or read book Classification and Regression Trees written by Leo Breiman and published by Routledge. This book was released on 2017-10-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Classification and Regression Trees, CART

Download Classification and Regression Trees, CART PDF Online Free

Author :
Publisher : Intl Food Policy Res Inst
ISBN 13 : 0896293378
Total Pages : 59 pages
Book Rating : 4.8/5 (962 download)

DOWNLOAD NOW!


Book Synopsis Classification and Regression Trees, CART by : Yisehac Yohannes

Download or read book Classification and Regression Trees, CART written by Yisehac Yohannes and published by Intl Food Policy Res Inst. This book was released on 1999-01-01 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Managing Data Science

Download Managing Data Science PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838824561
Total Pages : 276 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Managing Data Science by : Kirill Dubovikov

Download or read book Managing Data Science written by Kirill Dubovikov and published by Packt Publishing Ltd. This book was released on 2019-11-12 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.

Machine Learning Essentials

Download Machine Learning Essentials PDF Online Free

Author :
Publisher : STHDA
ISBN 13 : 1986406857
Total Pages : 211 pages
Book Rating : 4.9/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Essentials by : Alboukadel Kassambara

Download or read book Machine Learning Essentials written by Alboukadel Kassambara and published by STHDA. This book was released on 2018-03-10 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples.

Relational Data Mining

Download Relational Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540422891
Total Pages : 422 pages
Book Rating : 4.4/5 (228 download)

DOWNLOAD NOW!


Book Synopsis Relational Data Mining by : Saso Dzeroski

Download or read book Relational Data Mining written by Saso Dzeroski and published by Springer Science & Business Media. This book was released on 2001-08 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.

Master Machine Learning Algorithms

Download Master Machine Learning Algorithms PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 162 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Master Machine Learning Algorithms by : Jason Brownlee

Download or read book Master Machine Learning Algorithms written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-03-04 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.

Nature Inspired Computing

Download Nature Inspired Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811067473
Total Pages : 214 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Nature Inspired Computing by : Bijaya Ketan Panigrahi

Download or read book Nature Inspired Computing written by Bijaya Ketan Panigrahi and published by Springer. This book was released on 2017-10-03 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the select proceedings of the annual convention of the Computer Society of India. Divided into 10 topical volumes, the proceedings present papers on state-of-the-art research, surveys, and succinct reviews. The volumes cover diverse topics ranging from communications networks to big data analytics, and from system architecture to cyber security. This volume focuses on Nature Inspired Computing. The contents of this book will be useful to researchers and students alike.

Predictive Analytics

Download Predictive Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118948890
Total Pages : 384 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Predictive Analytics by : Ajit C. Tamhane

Download or read book Predictive Analytics written by Ajit C. Tamhane and published by John Wiley & Sons. This book was released on 2020-10-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a foundation in classical parametric methods of regression and classification essential for pursuing advanced topics in predictive analytics and statistical learning This book covers a broad range of topics in parametric regression and classification including multiple regression, logistic regression (binary and multinomial), discriminant analysis, Bayesian classification, generalized linear models and Cox regression for survival data. The book also gives brief introductions to some modern computer-intensive methods such as classification and regression trees (CART), neural networks and support vector machines. The book is organized so that it can be used by both advanced undergraduate or masters students with applied interests and by doctoral students who also want to learn the underlying theory. This is done by devoting the main body of the text of each chapter with basic statistical methodology illustrated by real data examples. Derivations, proofs and extensions are relegated to the Technical Notes section of each chapter, Exercises are also divided into theoretical and applied. Answers to selected exercises are provided. A solution manual is available to instructors who adopt the text. Data sets of moderate to large sizes are used in examples and exercises. They come from a variety of disciplines including business (finance, marketing and sales), economics, education, engineering and sciences (biological, health, physical and social). All data sets are available at the book’s web site. Open source software R is used for all data analyses. R codes and outputs are provided for most examples. R codes are also available at the book’s web site. Predictive Analytics: Parametric Models for Regression and Classification Using R is ideal for a one-semester upper-level undergraduate and/or beginning level graduate course in regression for students in business, economics, finance, marketing, engineering, and computer science. It is also an excellent resource for practitioners in these fields.

Springer Handbook of Engineering Statistics

Download Springer Handbook of Engineering Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1852338067
Total Pages : 1135 pages
Book Rating : 4.8/5 (523 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Engineering Statistics by : Hoang Pham

Download or read book Springer Handbook of Engineering Statistics written by Hoang Pham and published by Springer Science & Business Media. This book was released on 2006 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 836 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

IGARSS 2003

Download IGARSS 2003 PDF Online Free

Author :
Publisher : Institute of Electrical & Electronics Engineers(IEEE)
ISBN 13 :
Total Pages : 812 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis IGARSS 2003 by :

Download or read book IGARSS 2003 written by and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 2003 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning and Data Science Blueprints for Finance

Download Machine Learning and Data Science Blueprints for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492073008
Total Pages : 426 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Discrete Data Analysis with R

Download Discrete Data Analysis with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498725864
Total Pages : 700 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Discrete Data Analysis with R by : Michael Friendly

Download or read book Discrete Data Analysis with R written by Michael Friendly and published by CRC Press. This book was released on 2015-12-16 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth

Tree-based Machine Learning Algorithms

Download Tree-based Machine Learning Algorithms PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781975860974
Total Pages : 152 pages
Book Rating : 4.8/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Tree-based Machine Learning Algorithms by : Clinton Sheppard

Download or read book Tree-based Machine Learning Algorithms written by Clinton Sheppard and published by Createspace Independent Publishing Platform. This book was released on 2017-09-09 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learn how to use decision trees and random forests for classification and regression, their respective limitations, and how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you."--Back cover.

Advances in Data Science and Classification

Download Advances in Data Science and Classification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642722539
Total Pages : 678 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Advances in Data Science and Classification by : Alfredo Rizzi

Download or read book Advances in Data Science and Classification written by Alfredo Rizzi and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).