Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Causal Inference With Non Standard Experimental Designs
Download Causal Inference With Non Standard Experimental Designs full books in PDF, epub, and Kindle. Read online Causal Inference With Non Standard Experimental Designs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Experiments in Public Management Research by : Oliver James
Download or read book Experiments in Public Management Research written by Oliver James and published by Cambridge University Press. This book was released on 2017-07-27 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of experimental research and methods in public management, and their impact on theory, research practices and substantive knowledge.
Book Synopsis Best Practices in Quantitative Methods by : Jason W. Osborne
Download or read book Best Practices in Quantitative Methods written by Jason W. Osborne and published by SAGE. This book was released on 2008 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
Book Synopsis Experimental and Quasi-experimental Designs for Generalized Causal Inference by : William R. Shadish
Download or read book Experimental and Quasi-experimental Designs for Generalized Causal Inference written by William R. Shadish and published by Cengage Learning. This book was released on 2002 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sections include: experiments and generalised causal inference; statistical conclusion validity and internal validity; construct validity and external validity; quasi-experimental designs that either lack a control group or lack pretest observations on the outcome; quasi-experimental designs that use both control groups and pretests; quasi-experiments: interrupted time-series designs; regresssion discontinuity designs; randomised experiments: rationale, designs, and conditions conducive to doing them; practical problems 1: ethics, participation recruitment and random assignment; practical problems 2: treatment implementation and attrition; generalised causal inference: a grounded theory; generalised causal inference: methods for single studies; generalised causal inference: methods for multiple studies; a critical assessment of our assumptions.
Book Synopsis Using Propensity Scores in Quasi-Experimental Designs by : William M. Holmes
Download or read book Using Propensity Scores in Quasi-Experimental Designs written by William M. Holmes and published by SAGE Publications. This book was released on 2013-06-10 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using Propensity Scores in Quasi-Experimental Designs, by William M. Holmes, examines how propensity scores can be used to reduce bias with different kinds of quasi-experimental designs and to fix or improve broken experiments. Requiring minimal use of matrix and vector algebra, the book covers the causal assumptions of propensity score estimates and their many uses, linking these uses with analysis appropriate for different designs. Thorough coverage of bias assessment, propensity score estimation, and estimate improvement is provided, along with graphical and statistical methods for this process. Applications are included for analysis of variance and covariance, maximum likelihood and logistic regression, two-stage least squares, generalized linear regression, and general estimation equations. The examples use public data sets that have policy and programmatic relevance across a variety of disciplines.
Author :Judea Pearl Publisher :Createspace Independent Publishing Platform ISBN 13 :9781507894293 Total Pages :0 pages Book Rating :4.8/5 (942 download)
Book Synopsis An Introduction to Causal Inference by : Judea Pearl
Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Book Synopsis Experimental and Quasi-Experimental Designs for Research by : Donald T. Campbell
Download or read book Experimental and Quasi-Experimental Designs for Research written by Donald T. Campbell and published by Ravenio Books. This book was released on 2015-09-03 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: We shall examine the validity of 16 experimental designs against 12 common threats to valid inference. By experiment we refer to that portion of research in which variables are manipulated and their effects upon other variables observed. It is well to distinguish the particular role of this chapter. It is not a chapter on experimental design in the Fisher (1925, 1935) tradition, in which an experimenter having complete mastery can schedule treatments and measurements for optimal statistical efficiency, with complexity of design emerging only from that goal of efficiency. Insofar as the designs discussed in the present chapter become complex, it is because of the intransigency of the environment: because, that is, of the experimenter’s lack of complete control.
Book Synopsis Causal Inference in Statistics by : Judea Pearl
Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Book Synopsis Causal Inference by : Scott Cunningham
Download or read book Causal Inference written by Scott Cunningham and published by Yale University Press. This book was released on 2021-01-26 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
Book Synopsis Encyclopedia of Research Design by : Neil J. Salkind
Download or read book Encyclopedia of Research Design written by Neil J. Salkind and published by SAGE. This book was released on 2010-06-22 with total page 1779 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
Book Synopsis Methods of Randomization in Experimental Design by : Valentim R. Alferes
Download or read book Methods of Randomization in Experimental Design written by Valentim R. Alferes and published by SAGE. This book was released on 2012-10 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a conceptual systematization and a practical tool for the randomization of between-subjects and within-subjects experimental designs.
Book Synopsis Causal Inference in Statistics, Social, and Biomedical Sciences by : Guido W. Imbens
Download or read book Causal Inference in Statistics, Social, and Biomedical Sciences written by Guido W. Imbens and published by Cambridge University Press. This book was released on 2015-04-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.
Book Synopsis Experimental Political Science and the Study of Causality by : Rebecca B. Morton
Download or read book Experimental Political Science and the Study of Causality written by Rebecca B. Morton and published by Cambridge University Press. This book was released on 2010-08-06 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly, political scientists use the term 'experiment' or 'experimental' to describe their empirical research. One of the primary reasons for doing so is the advantage of experiments in establishing causal inferences. In this book, Rebecca B. Morton and Kenneth C. Williams discuss in detail how experiments and experimental reasoning with observational data can help researchers determine causality. They explore how control and random assignment mechanisms work, examining both the Rubin causal model and the formal theory approaches to causality. They also cover general topics in experimentation such as the history of experimentation in political science; internal and external validity of experimental research; types of experiments - field, laboratory, virtual, and survey - and how to choose, recruit, and motivate subjects in experiments. They investigate ethical issues in experimentation, the process of securing approval from institutional review boards for human subject research, and the use of deception in experimentation.
Book Synopsis Single-case and Small-n Experimental Designs by : John B. Todman
Download or read book Single-case and Small-n Experimental Designs written by John B. Todman and published by Psychology Press. This book was released on 2001-03 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to help researchers draw valid causal inferences from small-scale clinical intervention studies. It should be of interest to teachers of, and students in, courses with an experimental clinical component, as well as clinical researchers. Inferential statistics used in the analysis of group data are frequently invalid for use with data from single-case experimental designs. Even non-parametric rank tests provide, at best, approximate solutions for only some single-case (and small-n ) designs. Randomization (Exact) tests, on the other hand, can provide valid statistical analyses for all designs that incorporate a random procedure for assigning treatments to subjects or observation periods, including single-case designs. These Randomization tests require large numbers of data rearrangements and have been seldom used, partly because desktop computers have only recently become powerful enough to complete the analyses in a reasonable time. Now that the necessary computational power is available, they continue to be under-used because they receive scant attention in standard statistical texts for behavioral researchers and because available programs for running the analyses are relatively inaccessible to researchers with limited statistical or computing interest. This book is first and foremost a practical guide, although it also presents the theoretical basis for Randomization tests. Its most important aim is to make these tests accessible to researchers for a wide range of designs. It does this by providing programs on CD-ROM that allow users to run analyses of their data within a standard package (Minitab, Excel, or SPSS) with which they are already familiar. No statistical or computing expertise is required to use these programs. This is the "new stats" for single-case and small-n intervention studies, and anyone interested in this research approach will benefit.
Book Synopsis Statistical Models and Causal Inference by : David A. Freedman
Download or read book Statistical Models and Causal Inference written by David A. Freedman and published by Cambridge University Press. This book was released on 2010 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
Book Synopsis Understanding Statistics and Experimental Design by : Michael H. Herzog
Download or read book Understanding Statistics and Experimental Design written by Michael H. Herzog and published by Springer. This book was released on 2019-08-13 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.
Book Synopsis Observation and Experiment by : Paul Rosenbaum
Download or read book Observation and Experiment written by Paul Rosenbaum and published by Harvard University Press. This book was released on 2017-08-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A daily glass of wine prolongs life—yet alcohol can cause life-threatening cancer. Some say raising the minimum wage will decrease inequality while others say it increases unemployment. Scientists once confidently claimed that hormone replacement therapy reduced the risk of heart disease but now they equally confidently claim it raises that risk. What should we make of this endless barrage of conflicting claims? Observation and Experiment is an introduction to causal inference by one of the field’s leading scholars. An award-winning professor at Wharton, Paul Rosenbaum explains key concepts and methods through lively examples that make abstract principles accessible. He draws his examples from clinical medicine, economics, public health, epidemiology, clinical psychology, and psychiatry to explain how randomized control trials are conceived and designed, how they differ from observational studies, and what techniques are available to mitigate their bias. “Carefully and precisely written...reflecting superb statistical understanding, all communicated with the skill of a master teacher.” —Stephen M. Stigler, author of The Seven Pillars of Statistical Wisdom “An excellent introduction...Well-written and thoughtful...from one of causal inference’s noted experts.” —Journal of the American Statistical Association “Rosenbaum is a gifted expositor...an outstanding introduction to the topic for anyone who is interested in understanding the basic ideas and approaches to causal inference.” —Psychometrika “A very valuable contribution...Highly recommended.” —International Statistical Review