Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Brightness Optimization Of Ultra Fast Thomson Scattering X Ray Sources
Download Brightness Optimization Of Ultra Fast Thomson Scattering X Ray Sources full books in PDF, epub, and Kindle. Read online Brightness Optimization Of Ultra Fast Thomson Scattering X Ray Sources ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advanced Accelerator Concepts by : Vitaly Yakimenko
Download or read book Advanced Accelerator Concepts written by Vitaly Yakimenko and published by American Inst. of Physics. This book was released on 2004-12-14 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings cover new developments for a number of the most advanced methods for acceleration of heavy ions, protons, electrons and positrons.
Book Synopsis Monochromatic X-ray Cancer Phototherapy and Characterization of the Compton Light Source by : William James Frederick
Download or read book Monochromatic X-ray Cancer Phototherapy and Characterization of the Compton Light Source written by William James Frederick and published by . This book was released on 2008 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Energy Research Abstracts written by and published by . This book was released on 1993 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nanoscale Photonic Imaging by : Tim Salditt
Download or read book Nanoscale Photonic Imaging written by Tim Salditt and published by Springer Nature. This book was released on 2020-06-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Book Synopsis Government reports annual index by :
Download or read book Government reports annual index written by and published by . This book was released on 199? with total page 1362 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Synchrotron Radiation by : Settimio Mobilio
Download or read book Synchrotron Radiation written by Settimio Mobilio and published by Springer. This book was released on 2014-08-06 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.
Book Synopsis Short Pulse Laser Interactions With Matter: An Introduction by : Paul Gibbon
Download or read book Short Pulse Laser Interactions With Matter: An Introduction written by Paul Gibbon and published by World Scientific. This book was released on 2005-09-05 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first comprehensive treatment of the subject, covering the theoretical principles, present experimental status and important applications of short-pulse laser-matter interactions.Femtosecond lasers have undergone dramatic technological advances over the last fifteen years, generating a whole host of new research activities under the theme of “ultrafast science”. The focused light from these devices is so intense that ordinary matter is torn apart within a few laser cycles. This book takes a close-up look at the exotic physical phenomena which arise as a result of this new form of “light-matter” interaction, covering a diverse set of topics including multiphoton ionization, rapid heatwaves, fast particle generation and relativistic self-channeling. These processes are central to a number of exciting new applications in other fields, such as microholography, optical particle accelerators and photonuclear physics.Repository for numerical models described in Chapter 6 can be found at www.fz-juelich.de/zam/cams/plasma/SPLIM/./a
Book Synopsis Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology by : Horst Aichinger
Download or read book Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology written by Horst Aichinger and published by Springer Science & Business Media. This book was released on 2011-10-25 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely updated second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology provides the reader with detailed guidance on the optimization of radiological imaging. The basic physical principles of diagnostic radiology are first presented in detail, and their application to clinical problems is then carefully explored. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader’s own programs. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers.
Book Synopsis Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science by : Lai Chung Liu
Download or read book Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science written by Lai Chung Liu and published by Springer Nature. This book was released on 2020-09-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.
Book Synopsis Visualizing Chemistry by : National Research Council
Download or read book Visualizing Chemistry written by National Research Council and published by National Academies Press. This book was released on 2006-06-01 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers have long relied on the power of imaging techniques to help see objects invisible to the naked eye, and thus, to advance scientific knowledge. These experts are constantly pushing the limits of technology in pursuit of chemical imagingâ€"the ability to visualize molecular structures and chemical composition in time and space as actual events unfoldâ€"from the smallest dimension of a biological system to the widest expanse of a distant galaxy. Chemical imaging has a variety of applications for almost every facet of our daily lives, ranging from medical diagnosis and treatment to the study and design of material properties in new products. In addition to highlighting advances in chemical imaging that could have the greatest impact on critical problems in science and technology, Visualizing Chemistry reviews the current state of chemical imaging technology, identifies promising future developments and their applications, and suggests a research and educational agenda to enable breakthrough improvements.
Download or read book Physics Briefs written by and published by . This book was released on 1992 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Radioluminescence by : Jan Lindström
Download or read book Radioluminescence written by Jan Lindström and published by Linköping University Electronic Press. This book was released on 2021-03-24 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: A phosphor or scintillator is a material that will emit visible light when struck by ionising radiation. In the early days of diagnostic radiology, it was discovered that the radiation dose needed to get an image on a film, could be greatly reduced by inserting a fluorescent layer of a phosphor in direct contact with the film. Thus, introducing the step of converting the ionising radiation to light in a first step. Going forward in time, film has been replaced with photodetectors and there is now a variety of imaging x-ray systems, still based on phosphors and scintillators. There is continuous research going on to optimise between the radiation dose needed and a sufficient image quality. These factors tend to be in opposition to each other. It is a complicated task to optimise these imaging system and new phosphor materials emerges regularly. One of the key factors is the efficiency of the conversion from xrays to light. In this work this is denoted “extrinsic efficiency”. It is important since it largely determines the final dose to the patient needed for the imaging task. Most imaging x-ray detectors are based on phosphor or scintillator types where their imaging performance has been improved through tweaking of various parameters (light guide structure, higher density, light emission spectrum matching to photodetectors, delayed fluorescence quenching etc) One key factor that largely determines the extrinsic efficiency of a specific phosphor is the particle size. Larger particles result in a higher luminance of the phosphor for the same radiation dose as does as a thicker phosphor layer (to a limit). There exists already a battery of models describing various phosphor qualities. However, particle size and thickness have not been treated as a fully independent variables in previous model works. Indirectly, the influence of these parameters is accounted for, but the existing models were either considered too general, containing several complex parameters and factors to cover all kind of cases or too highly specialised to be easily applicable to fluorescent detectors in diagnostic radiology. The aim of this thesis is therefore to describe and assess a simple model denoted the “LAC-model” (after the original authors Lindström and Alm Carlsson), developed for a fluorescent layer using individual sub-layers defined by the particle size diameter. The model is thought to be a tool for quickly evaluating various particle size and fluorescent layer thickness combinations for a chosen phosphor and design. It may also serve as a more intuitive description of the underlying parameters influencing the final extrinsic efficiency. Further tests affirmed the validity of the model through measurements. The LACmodel produced results deviating a maximum of +5 % from luminescence measurements. During the development of the model various assumptions and simplifications were made. One assumption was the absence of a so called “dead layer”. This is a layer supposedly surrounding each particle decreasing the efficiency of converting x-rays to light. It is not completely “dead” as in inactive but is thought to have a reduced efficiency. This phenomenon was struggled with, when historically designing electron beam stimulated phosphors for various applications (i.e. displays, TV tubes etc). There are also articles reporting dead layer influence for x-ray detectors (usually spectrometers i.e. not for imaging). By introducing a dead layer in the LAC-model the effect of the layer was investigated and was found to result in a change of less than 8% for the extrinsic efficiency. It was also noted that sometimes a dead layer effect may emerge at surfaces of a scintillator slab but not necessarily connected to the phosphor particles themselves. Due to differences between phosphor material and the surroundings, an interface effect arose to compete with the process of inherent dead layers of the individual particles. It was found to be mostly negligible for x-rays in the studied energy and material range. However, an effect was shown for electrons as incident ionising radiation which could shed some light on the strangely neglected apparent dead layer created this way. Finally, applications, one involving developing a prototype for checking the light field radiation field coincidence, were evaluated for overall performance and the optimisation level of the applied fluorescent layer. Interesting findings were made during the development process: for the first time to the knowledge of the author, focus shift wandering was quantified in the corresponding movement of the x-ray field edge and a non-trivial discussion on the concept of an apparent light field edge resulted in a modified definition of the same. En fosfor eller scintillator är ett material som avger synligt ljus när det träffas av joniserande strålning. Inom diagnostisk radiologi upptäckte man i ett tidigt skede att stråldosen som behövdes för att få en bild på en röntgenfilm, reducerades kraftigt om man placerade ett fluorescerande skikt, en fosfor, i direkt kontakt med filmen. I nutid har film ersatts med fotodetektorer och det finns nu en mängd olika röntgenbildsystem men som fortfarande är baserade på fosforer och scintillatorer. Det pågår en kontinuerlig forskning för att optimera mellan erforderlig stråldos och en tillräcklig god diagnostisk bildkvalitet. Dessa faktorer tenderar att motverka varandra. Det är en komplicerad uppgift att optimera röntgenbildsystemen och nya fosformaterial dyker ständigt upp. En av de viktiga egenskaperna är fosforns omvandlingseffektivitet från röntgen till ljus. I detta arbete används benämningen ”extrinsisk (yttre) effektivitet". Denna egenskap är viktig eftersom den i stor utsträckning bestämmer den slutliga dosen till patienten som krävs för bilddiagnostiken. De flesta röntgendetektorer är baserade på fosfor- eller scintillatortyper där bildprestanda har förbättrats genom att utveckla olika parametrar (ljusledarstruktur, högre densitet, ljusemissionsspektrum som matchar fotodetektorer, minskad efterlysning etc.). En viktig faktor som i stor utsträckning bestämmer omvandlingseffektiviteten hos en specifik fosfor är partikelstorleken. Större partiklar resulterar i en högre luminescens (mer ljus) från fosforen för samma stråldos. Vilket också gäller för ett tjockare fosforlager (till en viss gräns!). Det finns redan fysikaliska modeller som beskriver olika fosforparametrar men partikelstorlek och fosfortjocklek har dock inte hanterats som fristående variabler i dessa modellarbeten. Istället har deras inverkan modellerats indirekt men det har gjort att de befintliga modellerna kan anses komplexa. De är antingen för generella som medför flera komplexa parametrar och faktorer för att täcka alla tänkbara varianter eller för specialiserade för att kunna tillämpas enkelt på fluorescerande detektorer i diagnostisk radiologi. Syftet med denna avhandling är därför att beskriva och analysera en praktisk modell betecknad ”LAC-modellen” (efter de ursprungliga författarna Lindström och Alm Carlsson). Den är utvecklad för ett fluorescerande block som består av flera underliggande skikt vars tjocklek bestäms av partiklarnas diameter. Avsikten med modellen är att den ska vara ett verktyg för att snabbt utvärdera olika varianter av partikelstorlek och tjockleks-kombinationer för en vald fosfor med i grunden samma design. Experiment har bekräftat modellens giltighet och mätresultat visar att modellresultaten avvek maximalt +5% från luminiscensmätningar. Utvecklingen av modellen krävde olika antaganden och förenklingar. Ett antagande var frånvaron av ett så kallat ”dött lager”. Det är ett skikt som antas omge varje partikel och som därför minskar omvandlingseffektiviteten från röntgen till ljus. Det är dock inte helt "dött" i meningen helt inaktivt men har en mindre förmåga att omvandla röntgen till ljus jämfört med fosforns huvudmaterial. Historisk sett har man försökt åtgärda detta fenomen under lång tid och speciellt för applikationer där man använt sig av elektronstrålar (dvs olika typer av displayer, TV-rör etc.). Just för elektroner har man sett att döda skiktet tenderar att växa med tiden. Det finns också artiklar som rapporterar en påverkan av röntgendetektorers funktion (vanligtvis dock för spektrometrar, dvs inte för avbildning). Genom att införa ett dött skikt i LAC-modellen undersöktes skiktets effekt och visade sig resultera i en förändring på mindre än 8% för effektiviteten. Det noterades också att ibland kan en dödskiktsliknande effekt uppstå vid ytor av ett scintillatorblock men inte nödvändigtvis pga. av själva fosforpartiklarnas ljusomvandlingsegenskaper. Då det uppstår skillnader mellan fosformaterialet och omgivningen får man en s.k. gränsskiktseffekt som s.a.s. konkurrerar med kemiskt döda skiktet på de enskilda partiklarna. De döda skiktens inverkan visade sig i princip försumbara för röntgenbild-detektorer - åtminstone inom det studerade energi- och materialområdet. En tydlig effekt kunde dock noteras för joniserande strålning i form av elektroner. Simuleringarna kunde ge en bättre bild av egenskaperna hos det döda skiktet som skapats på detta sätt. Slutligen utvärderades två applikationer med hjälp av LAC-modellen: en prototyp för kontroll av ljusfältets och strålfältets överenstämmelse i läge och position. Samt en etablerad produkt med samma användningsområde. I båda fallen undersöktes det fluorescerande skiktets optimeringsgrad. Intressanta resultat noterades under utvecklingsprocessen av prototypen: för första gången, så vitt författaren vet, kunde man kvantifiera röntgenrörs s.k. fokusvandring.
Book Synopsis High Energy and Short Pulse Lasers by : Richard Viskup
Download or read book High Energy and Short Pulse Lasers written by Richard Viskup and published by BoD – Books on Demand. This book was released on 2016-09-07 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the readers an introduction to experimental and theoretical knowledge acquired by large-scale laser laboratories that are dealing with extra-high peak power and ultrashort laser pulses for research of terawatt (TW), petawatt (PW), or near-future exawatt (EW) laser interactions, for soft X-ray sources, for acceleration of particles, or for generation of hot dense thermal plasma for the laser fusion. The other part of this book is dealing with the small-scale laser laboratories that are using for its research on commercial sources of laser radiation, nanosecond (ns), picosecond (ps), or femtosecond (fs) laser pulses, either for basic research or for more advanced applications. This book is divided into six main sections dealing with short and ultrashort laser pulses, laser-produced soft X-ray sources, large-scale high-power laser systems, free-electron lasers, fiber-based sources of short optical pulse, and applications of short pulse lasers. In each chapter readers can find fascinating topics related to the high energy and/or short pulse laser technique. Individual chapters should serve the broad spectrum of readers of different expertise, layman, undergraduate and postgraduate students, scientists, and engineers, who may in this book find easily explained fundamentals as well as advanced principles of particular subjects related to these phenomena.
Book Synopsis X-Ray Spectroscopy by : Bipin K. Agarwal
Download or read book X-Ray Spectroscopy written by Bipin K. Agarwal and published by Springer. This book was released on 2013-06-29 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray spectroscopy has emerged as a powerful tool in research and in industrial laboratories. It is used in the study of metals, semiconductors, amorphous solids, liquids and gases. This comprehensive presentation develops the subject from its basic principles and relates the theory to experimental observations. The new edition includes topics that have recently become important, for example, the X-ray laser, appearance potential spectroscopy, synchrotron radiation and EXAFS of high-Tc superconducting materials. A thorough introduction, up to research level, isprovided to EXAFS, which has seen rapid development in the past few years. This textbook conveniently presents the principles, applications and current techniques of X-ray spectroscopy, which makes it ideal for graduate students beginning research involving x-ray spectroscopy.
Book Synopsis Few-Cycle Laser Pulse Generation and Its Applications by : Franz X. Kärtner
Download or read book Few-Cycle Laser Pulse Generation and Its Applications written by Franz X. Kärtner and published by Springer Science & Business Media. This book was released on 2004-09-14 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the physics, technology and applications of short pulse laser sources that generate pulses with durations of only a few optical cycles. The basic design considerations for the different systems such as lasers, parametric amplifiers and external compression techniques which have emerged over the last decade are discussed to give researchers and graduate students a thorough introduction to this field. The existence of these sources has opened many new fields of research that were not possible before. These are UV and EUV generation from table-top systems using high-harmonic generation, frequency metrology enabling optical frequency counting, high-resolution optical coherence tomography, strong-field ultrafast solid-state processes and ultrafast spectroscopy, to mention only a few. Many new applications will follow. The book attempts to give a comprehensive, while not excessive, introduction to this exciting new field that serves both experienced researchers and graduate students entering the field. The first half of the book covers the current physical principles, processes and design guidelines to generate pulses in the optical range comprising only a few cycles of light. Such as the generation of relatively low energy pulses at high repetition rates directly from the laser, parametric generation of medium energy pulses and high-energy pulses at low repetition rates using external compression in hollow fibers. The applications cover the revolution in frequency metrology and high-resolution laser spectroscopy to electric field synthesis in the optical range as well as the emerging field of high-harmonic generation and attosecond science, high-resolution optical imaging and novel ultrafast dynamics in semiconductors. These fields benefit from the strong electric fields accompanying these pulses in solids and gases during events comprising only a few cycles of light.
Book Synopsis Physics of and Science with X-Ray Free-Electron Lasers by : J. Hastings
Download or read book Physics of and Science with X-Ray Free-Electron Lasers written by J. Hastings and published by IOS Press. This book was released on 2020-12-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many X-Ray Free-Electron Lasers (X-FELs) have been designed, built and commissioned since the first lasing of the Linac Coherent Light Source in the hard and soft X-ray regions, and great progress has been made in improving their performance and extending their capabilities. Meanwhile, experimental techniques to exploit the unique properties of X-FELs to explore atomic and molecular systems of interest to physics, chemistry, biology and the material sciences have also been developed. As a result, our knowledge of atomic and molecular science has been greatly extended. Nevertheless, there is still much to be accomplished, and the potential for discovery with X-FELs is still largely unexplored. The next generation of scientists will need to be well versed in both particle beams/FEL physics and X-ray photon science. This book presents material from the Enrico Fermi summer school: Physics of and Science with X-Ray Free-Electron Lasers, held at the Enrico Fermi International School of Physics in Varenna, Italy, from 26 June - 1 July 2017. The lectures presented at the school were aimed at introducing graduate students and young scientists to this fast growing and exciting scientific area, and subjects covered include basic accelerator and FEL physics, as well as an introduction to the main research topics in X-FEL-based biology, atomic molecular optical science, material sciences, high-energy density physics and chemistry. Bridging the gap between accelerator/FEL physicists and scientists from other disciplines, the book will be of interest to all those working in the field.