Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Bounded Variation And Around
Download Bounded Variation And Around full books in PDF, epub, and Kindle. Read online Bounded Variation And Around ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Bounded Variation and Around by : Jürgen Appell
Download or read book Bounded Variation and Around written by Jürgen Appell and published by Walter de Gruyter. This book was released on 2013-12-12 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this monograph is to give a thorough and self-contained account of functions of (generalized) bounded variation, the methods connected with their study, their relations to other important function classes, and their applications to various problems arising in Fourier analysis and nonlinear analysis. In the first part the basic facts about spaces of functions of bounded variation and related spaces are collected, the main ideas which are useful in studying their properties are presented, and a comparison of their importance and suitability for applications is provided, with a particular emphasis on illustrative examples and counterexamples. The second part is concerned with (sometimes quite surprising) properties of nonlinear composition and superposition operators in such spaces. Moreover, relations with Riemann-Stieltjes integrals, convergence tests for Fourier series, and applications to nonlinear integral equations are discussed. The only prerequisite for understanding this book is a modest background in real analysis, functional analysis, and operator theory. It is addressed to non-specialists who want to get an idea of the development of the theory and its applications in the last decades, as well as a glimpse of the diversity of the directions in which current research is moving. Since the authors try to take into account recent results and state several open problems, this book might also be a fruitful source of inspiration for further research.
Book Synopsis Weakly Differentiable Functions by : William P. Ziemer
Download or read book Weakly Differentiable Functions written by William P. Ziemer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term "weakly differentiable functions" in the title refers to those inte n grable functions defined on an open subset of R whose partial derivatives in the sense of distributions are either LP functions or (signed) measures with finite total variation. The former class of functions comprises what is now known as Sobolev spaces, though its origin, traceable to the early 1900s, predates the contributions by Sobolev. Both classes of functions, Sobolev spaces and the space of functions of bounded variation (BV func tions), have undergone considerable development during the past 20 years. From this development a rather complete theory has emerged and thus has provided the main impetus for the writing of this book. Since these classes of functions play a significant role in many fields, such as approximation theory, calculus of variations, partial differential equations, and non-linear potential theory, it is hoped that this monograph will be of assistance to a wide range of graduate students and researchers in these and perhaps other related areas. Some of the material in Chapters 1-4 has been presented in a graduate course at Indiana University during the 1987-88 academic year, and I am indebted to the students and colleagues in attendance for their helpful comments and suggestions.
Book Synopsis Minimal Surfaces and Functions of Bounded Variation by : Giusti
Download or read book Minimal Surfaces and Functions of Bounded Variation written by Giusti and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].
Book Synopsis A First Course in Sobolev Spaces by : Giovanni Leoni
Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.
Book Synopsis Free Discontinuity Problems by : Nicola Fusco
Download or read book Free Discontinuity Problems written by Nicola Fusco and published by Springer. This book was released on 2017-02-02 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a series of lectures on three of the best known examples of free discontinuity problems: the Mumford-Shah model for image segmentation, a variational model for the epitaxial growth of thin films, and the sharp interface limit of the Ohta-Kawasaki model for pattern formation in dyblock copolymers.
Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
Book Synopsis A First Course in Real Analysis by : M.H. Protter
Download or read book A First Course in Real Analysis written by M.H. Protter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.
Book Synopsis Regular Variation by : N. H. Bingham
Download or read book Regular Variation written by N. H. Bingham and published by Cambridge University Press. This book was released on 1989-06-15 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the theory and applications of regular variation.
Book Synopsis Mathematical Analysis Fundamentals by : Agamirza Bashirov
Download or read book Mathematical Analysis Fundamentals written by Agamirza Bashirov and published by Academic Press. This book was released on 2014-03-27 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. - Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers - Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces - Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration - Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus
Book Synopsis Measure, Integration and a Primer on Probability Theory by : Stefano Gentili
Download or read book Measure, Integration and a Primer on Probability Theory written by Stefano Gentili and published by Springer Nature. This book was released on 2020-11-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering.
Book Synopsis Integral, Measure and Derivative by : G. E. Shilov
Download or read book Integral, Measure and Derivative written by G. E. Shilov and published by Courier Corporation. This book was released on 2013-05-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.
Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Book Synopsis Functions of Bounded Variation and Their Fourier Transforms by : Elijah Liflyand
Download or read book Functions of Bounded Variation and Their Fourier Transforms written by Elijah Liflyand and published by Springer. This book was released on 2019-03-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functions of bounded variation represent an important class of functions. Studying their Fourier transforms is a valuable means of revealing their analytic properties. Moreover, it brings to light new interrelations between these functions and the real Hardy space and, correspondingly, between the Fourier transform and the Hilbert transform. This book is divided into two major parts, the first of which addresses several aspects of the behavior of the Fourier transform of a function of bounded variation in dimension one. In turn, the second part examines the Fourier transforms of multivariate functions with bounded Hardy variation. The results obtained are subsequently applicable to problems in approximation theory, summability of the Fourier series and integrability of trigonometric series.
Book Synopsis The Divergence Theorem and Sets of Finite Perimeter by : Washek F. Pfeffer
Download or read book The Divergence Theorem and Sets of Finite Perimeter written by Washek F. Pfeffer and published by CRC Press. This book was released on 2012-04-12 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration — no generalized Riemann integrals of Henstock–Kurzweil variety are involved. In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy–Riemann, Laplace, and minimal surface equations. The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev’s spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation. The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field.
Book Synopsis Hassler Whitney Collected Papers Volume I by : James Eelles
Download or read book Hassler Whitney Collected Papers Volume I written by James Eelles and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present here the mathematical papers of Hassler Whitney. This collection contains all the published papers, with the exception of some short announcements that Whitney did not wish to be included. We also include the introduction to his book Geometric Integration Theory, and one previously unpublished manuscript on the four-color problem. The papers are presented under some broad categories: graphs· and combinatorics, differentiable functions and singularities, analytic spaces, manifolds, bundles and characteristic classes, topology and algebraic topology, geometric integration theory. Whitney intended to write an introduction to this collection. Unfortunately he left us no manuscript at the time of his death, May 10, 1989. We had discussed the possibility of using his paper "Moscow 1935 - Topology moving toward America," written for the Centennial of the American Mathematical Society, as part of his introduction to this collection, an idea which he much liked. We therefore include this paper, which contains personal information as well as mathematical reflections, as Whitney's own introduction to these volumes. Whitney's mathematical style, like his personal style, was that of an explorer and pioneer. One of the pictures included in these volumes shows him as a mountain climber. In mathematics, he preferred to work on undeveloped areas: break new ground and build foundations. During the last twenty years of his life he concentrated his efforts on developing an educational system that builds on the natural tendency in children to be explorers.
Download or read book Real Analysis written by N. L. Carothers and published by Cambridge University Press. This book was released on 2000-08-15 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.
Download or read book Vector Measures written by Joseph Diestel and published by American Mathematical Soc.. This book was released on 1977-06-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this survey the authors endeavor to give a comprehensive examination of the theory of measures having values in Banach spaces. The interplay between topological and geometric properties of Banach spaces and the properties of measures having values in Banach spaces is the unifying theme. The first chapter deals with countably additive vector measures finitely additive vector measures, the Orlicz-Pettis theorem and its relatives. Chapter II concentrates on measurable vector valued functions and the Bochner integral. Chapter III begins the study of the interplay among the Radon-Nikodym theorem for vector measures, operators on $L_1$ and topological properties of Banach spaces. A variety of applications is given in the next chapter. Chapter V deals with martingales of Bochner integrable functions and their relation to dentable subsets of Banach spaces. Chapter VI is devoted to a measure-theoretic study of weakly compact absolutely summing and nuclear operators on spaces of continuous functions. In Chapter VII a detailed study of the geometry of Banach spaces with the Radon-Nikodym property is given. The next chapter deals with the use of Radon-Nikodym theorems in the study of tensor products of Banach spaces. The last chapter concludes the survey with a discussion of the Liapounoff convexity theorem and other geometric properties of the range of a vector measure. Accompanying each chapter is an extensive survey of the literature and open problems.