Elliptic Problems in Nonsmooth Domains

Download Elliptic Problems in Nonsmooth Domains PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972027
Total Pages : 426 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Problems in Nonsmooth Domains by : Pierre Grisvard

Download or read book Elliptic Problems in Nonsmooth Domains written by Pierre Grisvard and published by SIAM. This book was released on 2011-10-20 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Problems in Domains with Piecewise Smooth Boundaries

Download Elliptic Problems in Domains with Piecewise Smooth Boundaries PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110848910
Total Pages : 537 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Problems in Domains with Piecewise Smooth Boundaries by : Sergey Nazarov

Download or read book Elliptic Problems in Domains with Piecewise Smooth Boundaries written by Sergey Nazarov and published by Walter de Gruyter. This book was released on 2011-06-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Wave Factorization of Elliptic Symbols: Theory and Applications

Download Wave Factorization of Elliptic Symbols: Theory and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792365310
Total Pages : 192 pages
Book Rating : 4.3/5 (653 download)

DOWNLOAD NOW!


Book Synopsis Wave Factorization of Elliptic Symbols: Theory and Applications by : Vladimir B. Vasil'ev

Download or read book Wave Factorization of Elliptic Symbols: Theory and Applications written by Vladimir B. Vasil'ev and published by Springer Science & Business Media. This book was released on 2000-09-30 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.

Elliptic Boundary Value Problems in Domains with Point Singularities

Download Elliptic Boundary Value Problems in Domains with Point Singularities PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821807544
Total Pages : 426 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems in Domains with Point Singularities by : Vladimir Kozlov

Download or read book Elliptic Boundary Value Problems in Domains with Point Singularities written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 1997 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Polyharmonic Boundary Value Problems

Download Polyharmonic Boundary Value Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642122450
Total Pages : 444 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Polyharmonic Boundary Value Problems by : Filippo Gazzola

Download or read book Polyharmonic Boundary Value Problems written by Filippo Gazzola and published by Springer. This book was released on 2010-05-26 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. It provides rapid access to recent results and references.

Boundary Value Problems and Integral Equations in Nonsmooth Domains

Download Boundary Value Problems and Integral Equations in Nonsmooth Domains PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780824793203
Total Pages : 320 pages
Book Rating : 4.7/5 (932 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems and Integral Equations in Nonsmooth Domains by : Martin Costabel

Download or read book Boundary Value Problems and Integral Equations in Nonsmooth Domains written by Martin Costabel and published by CRC Press. This book was released on 1994-10-25 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the International Conference on Boundary Value Problems and lntegral Equations In Nonsmooth Domains held recently in Luminy, France, this work contains strongly interrelated, refereed papers that detail the latest findings in the fields of nonsmooth domains and corner singularities. Two-dimensional polygonal or Lipschitz domains, three-dimensional polyhedral corners and edges, and conical points in any dimension are examined.

The Laplace Equation

Download The Laplace Equation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319743074
Total Pages : 669 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis The Laplace Equation by : Dagmar Medková

Download or read book The Laplace Equation written by Dagmar Medková and published by Springer. This book was released on 2018-03-31 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.

Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains

Download Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319146483
Total Pages : 343 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains by : Mikhail S. Agranovich

Download or read book Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains written by Mikhail S. Agranovich and published by Springer. This book was released on 2015-05-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.

Non-Homogeneous Boundary Value Problems and Applications

Download Non-Homogeneous Boundary Value Problems and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642651615
Total Pages : 375 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Non-Homogeneous Boundary Value Problems and Applications by : Jacques Louis Lions

Download or read book Non-Homogeneous Boundary Value Problems and Applications written by Jacques Louis Lions and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.

A Unified Approach to Boundary Value Problems

Download A Unified Approach to Boundary Value Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 089871706X
Total Pages : 328 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A Unified Approach to Boundary Value Problems by : Athanassios S. Fokas

Download or read book A Unified Approach to Boundary Value Problems written by Athanassios S. Fokas and published by SIAM. This book was released on 2008-01-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.

Partial Differential Equations IX

Download Partial Differential Equations IX PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662067218
Total Pages : 287 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations IX by : M.S. Agranovich

Download or read book Partial Differential Equations IX written by M.S. Agranovich and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.

Parabolic Boundary Value Problems

Download Parabolic Boundary Value Problems PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034887671
Total Pages : 307 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Parabolic Boundary Value Problems by : Samuil D. Eidelman

Download or read book Parabolic Boundary Value Problems written by Samuil D. Eidelman and published by Birkhäuser. This book was released on 2012-12-06 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters.

Completeness of Root Functions of Regular Differential Operators

Download Completeness of Root Functions of Regular Differential Operators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780582236929
Total Pages : 276 pages
Book Rating : 4.2/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Completeness of Root Functions of Regular Differential Operators by : Sasun Yakubov

Download or read book Completeness of Root Functions of Regular Differential Operators written by Sasun Yakubov and published by CRC Press. This book was released on 1993-12-20 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The precise mathematical investigation of various natural phenomena is an old and difficult problem. This book is the first to deal systematically with the general non-selfadjoint problems in mechanics and physics. It deals mainly with bounded domains with smooth boundaries, but also considers elliptic boundary value problems in tube domains, i.e. in non-smooth domains. This volume will be of particular value to those working in differential equations, functional analysis, and equations of mathematical physics.

Analysis, Partial Differential Equations and Applications

Download Analysis, Partial Differential Equations and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764398981
Total Pages : 342 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Analysis, Partial Differential Equations and Applications by : Alberto Cialdea

Download or read book Analysis, Partial Differential Equations and Applications written by Alberto Cialdea and published by Springer Science & Business Media. This book was released on 2010-01-14 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes several invited lectures given at the International Workshop "Analysis, Partial Differential Equations and Applications", held at the Mathematical Department of Sapienza University of Rome, on the occasion of the 70th birthday of Vladimir G. Maz'ya, a renowned mathematician and one of the main experts in the field of pure and applied analysis. The book aims at spreading the seminal ideas of Maz'ya to a larger audience in faculties of sciences and engineering. In fact, all articles were inspired by previous works of Maz'ya in several frameworks, including classical and contemporary problems connected with boundary and initial value problems for elliptic, hyperbolic and parabolic operators, Schrödinger-type equations, mathematical theory of elasticity, potential theory, capacity, singular integral operators, p-Laplacians, functional analysis, and approximation theory. Maz'ya is author of more than 450 papers and 20 books. In his long career he obtained many astonishing and frequently cited results in the theory of harmonic potentials on non-smooth domains, potential and capacity theories, spaces of functions with bounded variation, maximum principle for higher-order elliptic equations, Sobolev multipliers, approximate approximations, etc. The topics included in this volume will be particularly useful to all researchers who are interested in achieving a deeper understanding of the large expertise of Vladimir Maz'ya.

Strongly Elliptic Systems and Boundary Integral Equations

Download Strongly Elliptic Systems and Boundary Integral Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521663755
Total Pages : 376 pages
Book Rating : 4.6/5 (637 download)

DOWNLOAD NOW!


Book Synopsis Strongly Elliptic Systems and Boundary Integral Equations by : William Charles Hector McLean

Download or read book Strongly Elliptic Systems and Boundary Integral Equations written by William Charles Hector McLean and published by Cambridge University Press. This book was released on 2000-01-28 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.

Elliptic Boundary Value Problems on Corner Domains

Download Elliptic Boundary Value Problems on Corner Domains PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540459421
Total Pages : 266 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems on Corner Domains by : Monique Dauge

Download or read book Elliptic Boundary Value Problems on Corner Domains written by Monique Dauge and published by Springer. This book was released on 2006-11-14 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.

Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains

Download Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031058216
Total Pages : 186 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains by : Hengguang Li

Download or read book Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains written by Hengguang Li and published by Springer Nature. This book was released on 2022-09-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a class of graded finite element methods to solve singular elliptic boundary value problems in two- and three-dimensional domains. It provides an approachable and self-contained presentation of the topic, including both the mathematical theory and numerical tools necessary to address the major challenges imposed by the singular solution. Moreover, by focusing upon second-order equations with constant coefficients, it manages to derive explicit results that are accessible to the broader computation community. Although written with mathematics graduate students and researchers in mind, this book is also relevant to applied and computational mathematicians, scientists, and engineers in numerical methods who may encounter singular problems.