Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Big Earth Data Intelligence For Environmental Modeling
Download Big Earth Data Intelligence For Environmental Modeling full books in PDF, epub, and Kindle. Read online Big Earth Data Intelligence For Environmental Modeling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Big Earth Data Intelligence for Environmental Modeling by : Peng Liu
Download or read book Big Earth Data Intelligence for Environmental Modeling written by Peng Liu and published by Frontiers Media SA. This book was released on 2022-06-01 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Artificial Intelligence Methods in the Environmental Sciences by : Sue Ellen Haupt
Download or read book Artificial Intelligence Methods in the Environmental Sciences written by Sue Ellen Haupt and published by Springer Science & Business Media. This book was released on 2008-11-28 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Book Synopsis Manual of Digital Earth by : Huadong Guo
Download or read book Manual of Digital Earth written by Huadong Guo and published by Springer Nature. This book was released on 2019-11-18 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.
Book Synopsis Deep Learning for the Earth Sciences by : Gustau Camps-Valls
Download or read book Deep Learning for the Earth Sciences written by Gustau Camps-Valls and published by John Wiley & Sons. This book was released on 2021-08-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Book Synopsis Large-Scale Machine Learning in the Earth Sciences by : Ashok N. Srivastava
Download or read book Large-Scale Machine Learning in the Earth Sciences written by Ashok N. Srivastava and published by CRC Press. This book was released on 2017-08-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.
Book Synopsis Data Science Applied to Sustainability Analysis by : Jennifer Dunn
Download or read book Data Science Applied to Sustainability Analysis written by Jennifer Dunn and published by Elsevier. This book was released on 2021-05-11 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1522575022 Total Pages :2362 pages Book Rating :4.5/5 (225 download)
Book Synopsis Web Services: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources
Download or read book Web Services: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2018-12-07 with total page 2362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Web service technologies are redefining the way that large and small companies are doing business and exchanging information. Due to the critical need for furthering automation, engagement, and efficiency, systems and workflows are becoming increasingly more web-based. Web Services: Concepts, Methodologies, Tools, and Applications is an innovative reference source that examines relevant theoretical frameworks, current practice guidelines, industry standards and standardization, and the latest empirical research findings in web services. Highlighting a range of topics such as cloud computing, quality of service, and semantic web, this multi-volume book is designed for computer engineers, IT specialists, software designers, professionals, researchers, and upper-level students interested in web services architecture, frameworks, and security.
Book Synopsis Artificial Intelligence and The Environment by : Cindy Mason
Download or read book Artificial Intelligence and The Environment written by Cindy Mason and published by . This book was released on 2020-07-07 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume reports 16 AI projects on engineering sustainability using AI, Machine Learning, Signal Processing, Databases and other Technologies (Hybrid AI). Sixty scientists contribute to the volume on ‘Boots on the Ground’ topics including fire fighting, forestry sustainability, flood prediction, algae bloom prediction, water pollution prediction, sewage treatment, recycling and resource consumption. There are also ‘Data, Data Everywhere’ topics including biodiversity cataloguing, plant physiology and climate modeling, forest ecosystem modelling, satellite data aggregation and viewing and weather forecasting. The contributions of each team of scientists, AI researchers and engineers has been assembled with a set of helpful questions and answers called “Classroom Connection” at the end of each chapter. The existence of this book serves to document the AI projects in existence and some of the people who have been actively working to create sustainability using AI. Inside you’ll find many examples of hybrid AI - systems so complex, they need every AI trick in the book to solve them, and then some. The book is presented at the 2019 U.N. Climate Summit in Madrid Spain."--Publisher's description.
Book Synopsis Data Analytics and Artificial Intelligence for Earth Resource Management by : Deepak Kumar
Download or read book Data Analytics and Artificial Intelligence for Earth Resource Management written by Deepak Kumar and published by Elsevier. This book was released on 2024-11-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics and Artificial Intelligence for Earth Resource Management offers a detailed look at the different ways data analytics and artificial intelligence can help organizations make better-informed decisions, improve operations, and minimize the negative impacts of resource extraction on the environment. The book explains several different ways data analytics and artificial intelligence can improve and support earth resource management. Predictive modeling can help organizations understand the impacts of different management decisions on earth resources, such as water availability, land use, and biodiversity. Resource monitoring tracks the state of earth resources in real-time, identifying issues and opportunities for improvement. Providing managers with real-time data and analytics allows them to make more informed choices. Optimizing resource management decisions help to identify the most efficient and effective ways to allocate resources. Predictive maintenance allows organizations to anticipate when equipment might fail and take action to prevent it, reducing downtime and maintenance costs. Remote sensing with image processing and analysis can be used to extract information from satellite images and other remote sensing data, providing valuable information on land use, water resources, and other earth resources. - Provides a comprehensive understanding of data analytics and artificial intelligence (AI) for earth resource management - Includes real-world case studies and examples to demonstrate the practical applications of data analytics and AI in earth resource management - Presents clear illustrations, diagrams, and pictures that make the content more understandable and engaging
Book Synopsis Encyclopedia of Data Science and Machine Learning by : Wang, John
Download or read book Encyclopedia of Data Science and Machine Learning written by Wang, John and published by IGI Global. This book was released on 2023-01-20 with total page 3296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Book Synopsis Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing by : Ni-Bin Chang
Download or read book Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing written by Ni-Bin Chang and published by CRC Press. This book was released on 2018-02-21 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Book Synopsis Actionable Science of Global Environment Change by : Ziheng Sun
Download or read book Actionable Science of Global Environment Change written by Ziheng Sun and published by Springer Nature. This book was released on 2023-12-03 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume teaches readers how to sort through the vast mountain of climate and environmental science data to extract actionable insights. With the advancements in sensing technology, we now observe petabytes of data related to climate and the environment. While the volume of data is impressive, collecting big data for the sake of data alone proves to be of limited utility. Instead, our quest is for actionable data that can drive tangible actions and meaningful impact. Yet, unearthing actionable insights from the accumulated big data and delivering them to global stakeholders remains a burgeoning field. Although traditional data mining struggles to keep pace with data accumulation, scientific evolution has spurred the emergence of new technologies like numeric modeling and machine learning. These cutting-edge tools are now tackling grand challenges in climate and the environment, from forecasting extreme climate events and enhancing environmental productivity to monitoring greenhouse gas emissions, fostering smart environmental solutions, and understanding aerosols. Additionally, they model environmental-human interactions, inform policy, and steer markets towards a healthier and more environment-friendly direction. While there's no universal solution to address all these formidable tasks, this book takes us on a guided journey through three sections, enriched with chapters from domain scientists. Part I defines actionable science and explores what truly renders data actionable. Part II showcases compelling case studies and practical use scenarios, illustrating these principles in action. Finally, Part III provides an insightful glimpse into the future of actionable science, focusing on the pressing climate and environmental issues we must confront. Embark on this illuminating voyage with us, where big data meets practical research, and discover how our collective efforts move us closer to a sustainable and thriving future. This book is an invitation to unlock the mysteries of our environment, transforming data into decisive action for generations to come.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1522570349 Total Pages :1759 pages Book Rating :4.5/5 (225 download)
Book Synopsis Environmental Information Systems: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources
Download or read book Environmental Information Systems: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2018-09-07 with total page 1759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental information and systems play a major role in environmental decision making. As such, it is vital to understand the impact that they have on different aspects of sustainable environmental management, as well as to understand the opportunism they might present for further improvement. Environmental Information Systems: Concepts, Methodologies, Tools, and Applications is an innovative reference source containing the latest research on the use of information systems to track and organize environmental data for use in an overall environmental management system. Highlighting a range of topics such as environmental analysis, remote sensing, and geographic information science, this multi-volume book is designed for engineers, data scientists, practitioners, academicians, and researchers interested in all aspects of environmental information systems.
Book Synopsis Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road by : Huadong Guo
Download or read book Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road written by Huadong Guo and published by Springer Nature. This book was released on with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Google Earth Engine Applications by : Lalit Kumar
Download or read book Google Earth Engine Applications written by Lalit Kumar and published by MDPI. This book was released on 2019-04-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.
Book Synopsis Artificial Intelligence, Big Data, IOT and Block Chain in Healthcare: From Concepts to Applications by : Yousef Farhaoui
Download or read book Artificial Intelligence, Big Data, IOT and Block Chain in Healthcare: From Concepts to Applications written by Yousef Farhaoui and published by Springer Nature. This book was released on with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Smart Cities written by Houbing Song and published by John Wiley & Sons. This book was released on 2017-07-12 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the foundations and principles needed for addressing the various challenges of developing smart cities Smart cities are emerging as a priority for research and development across the world. They open up significant opportunities in several areas, such as economic growth, health, wellness, energy efficiency, and transportation, to promote the sustainable development of cities. This book provides the basics of smart cities, and it examines the possible future trends of this technology. Smart Cities: Foundations, Principles, and Applications provides a systems science perspective in presenting the foundations and principles that span multiple disciplines for the development of smart cities. Divided into three parts—foundations, principles, and applications—Smart Cities addresses the various challenges and opportunities of creating smart cities and all that they have to offer. It also covers smart city theory modeling and simulation, and examines case studies of existing smart cities from all around the world. In addition, the book: Addresses how to develop a smart city and how to present the state of the art and practice of them all over the world Focuses on the foundations and principles needed for advancing the science, engineering, and technology of smart cities—including system design, system verification, real-time control and adaptation, Internet of Things, and test beds Covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and Intelligent Transportation Systems (ITS) for improved mobility, safety, and environmental protection Smart Cities: Foundations, Principles, and Applications is a welcome reference for the many researchers and professionals working on the development of smart cities and smart city-related industries.