Bibliography of Non-Euclidean Geometry

Download Bibliography of Non-Euclidean Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 444 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry by : Duncan M'Laren Young Sommerville

Download or read book Bibliography of Non-Euclidean Geometry written by Duncan M'Laren Young Sommerville and published by . This book was released on 1911 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Bibliography of Non-Euclidean Geometry

Download Bibliography of Non-Euclidean Geometry PDF Online Free

Author :
Publisher : Chelsea Publishing Company, Incorporated
ISBN 13 :
Total Pages : 456 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry by : Duncan M'Laren Young Sommerville

Download or read book Bibliography of Non-Euclidean Geometry written by Duncan M'Laren Young Sommerville and published by Chelsea Publishing Company, Incorporated. This book was released on 1970 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Theory of Parallels

Download Theory of Parallels PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 : 9781099688812
Total Pages : 52 pages
Book Rating : 4.6/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Theory of Parallels by : Nikolaj Ivanovič Lobačevskij

Download or read book Theory of Parallels written by Nikolaj Ivanovič Lobačevskij and published by Independently Published. This book was released on 2019-05-22 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.

Bibliography of Non-Euclidean Geometry Including the Theory of Parallels, the Foundations of Geometry, and Space of N Dimensions

Download Bibliography of Non-Euclidean Geometry Including the Theory of Parallels, the Foundations of Geometry, and Space of N Dimensions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 424 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry Including the Theory of Parallels, the Foundations of Geometry, and Space of N Dimensions by : Duncan M'Laren Young Sommerville

Download or read book Bibliography of Non-Euclidean Geometry Including the Theory of Parallels, the Foundations of Geometry, and Space of N Dimensions written by Duncan M'Laren Young Sommerville and published by . This book was released on 1911 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Simple Non-Euclidean Geometry and Its Physical Basis

Download A Simple Non-Euclidean Geometry and Its Physical Basis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146126135X
Total Pages : 326 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis A Simple Non-Euclidean Geometry and Its Physical Basis by : I.M. Yaglom

Download or read book A Simple Non-Euclidean Geometry and Its Physical Basis written by I.M. Yaglom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many technical and popular accounts, both in Russian and in other languages, of the non-Euclidean geometry of Lobachevsky and Bolyai, a few of which are listed in the Bibliography. This geometry, also called hyperbolic geometry, is part of the required subject matter of many mathematics departments in universities and teachers' colleges-a reflec tion of the view that familiarity with the elements of hyperbolic geometry is a useful part of the background of future high school teachers. Much attention is paid to hyperbolic geometry by school mathematics clubs. Some mathematicians and educators concerned with reform of the high school curriculum believe that the required part of the curriculum should include elements of hyperbolic geometry, and that the optional part of the curriculum should include a topic related to hyperbolic geometry. I The broad interest in hyperbolic geometry is not surprising. This interest has little to do with mathematical and scientific applications of hyperbolic geometry, since the applications (for instance, in the theory of automorphic functions) are rather specialized, and are likely to be encountered by very few of the many students who conscientiously study (and then present to examiners) the definition of parallels in hyperbolic geometry and the special features of configurations of lines in the hyperbolic plane. The principal reason for the interest in hyperbolic geometry is the important fact of "non-uniqueness" of geometry; of the existence of many geometric systems.

A History of Non-Euclidean Geometry

Download A History of Non-Euclidean Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441986804
Total Pages : 481 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis A History of Non-Euclidean Geometry by : Boris A. Rosenfeld

Download or read book A History of Non-Euclidean Geometry written by Boris A. Rosenfeld and published by Springer Science & Business Media. This book was released on 2012-09-08 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.

Bibliography of Non-Euclidean Geometry

Download Bibliography of Non-Euclidean Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 410 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry by : Duncan Mclaren Young Sommerville

Download or read book Bibliography of Non-Euclidean Geometry written by Duncan Mclaren Young Sommerville and published by . This book was released on 1972 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry: A Comprehensive Course

Download Geometry: A Comprehensive Course PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131734
Total Pages : 466 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Geometry: A Comprehensive Course by : Dan Pedoe

Download or read book Geometry: A Comprehensive Course written by Dan Pedoe and published by Courier Corporation. This book was released on 2013-04-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.

Flavors of Geometry

Download Flavors of Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521629621
Total Pages : 212 pages
Book Rating : 4.6/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Flavors of Geometry by : Silvio Levy

Download or read book Flavors of Geometry written by Silvio Levy and published by Cambridge University Press. This book was released on 1997-09-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flavors of Geometry is a volume of lectures on four geometrically-influenced fields of mathematics that have experienced great development in recent years. Growing out of a series of introductory lectures given at the Mathematical Sciences Research Institute in January 1995 and January 1996, the book presents chapters by masters in their respective fields on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture begins with a discussion of elementary concepts, examines the highlights of the field, and concludes with a look at more advanced material. The style and presentation of the chapters are clear and accessible, and most of the lectures are richly illustrated. Bibiliographies and indexes are included to encourage further reading on the topics discussed.

The Elements of Non-Euclidean Geometry

Download The Elements of Non-Euclidean Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 588 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Non-Euclidean Geometry by : Duncan M'Laren Young Sommerville

Download or read book The Elements of Non-Euclidean Geometry written by Duncan M'Laren Young Sommerville and published by . This book was released on 1914 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Foundations of Hyperbolic Manifolds

Download Foundations of Hyperbolic Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475740131
Total Pages : 761 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Hyperbolic Manifolds by : John Ratcliffe

Download or read book Foundations of Hyperbolic Manifolds written by John Ratcliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

Bibliography of Non-Euclidean Geometry

Download Bibliography of Non-Euclidean Geometry PDF Online Free

Author :
Publisher : Forgotten Books
ISBN 13 : 9780331621686
Total Pages : 422 pages
Book Rating : 4.6/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry by : Duncan M. Y. Sommerville

Download or read book Bibliography of Non-Euclidean Geometry written by Duncan M. Y. Sommerville and published by Forgotten Books. This book was released on 2017-11-21 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excerpt from Bibliography of Non-Euclidean Geometry: Including the Theory of Parallels, the Foundations of Geometry, and Space of N Dimensions The classification is indicated in square brackets after the title. The names of journals are abbreviated according to the system adopted for the International Catalogue. Figures in heavy type are volume-numbers or years, the figures in brackets which sometimes precede these are the numbers of the series, the figures after the volume-numbers are the page-numbers. There are numerous references from one title to another which is closely connected with it. When the name of an author is in small capitals, simply followed by the date, as chasles, 1856, this indicates a reference to the Chronological Catalogue under the year and author mentioned. The sign indicates a reference to the Appendix, where some additional information is given which has been received too late for insertion without over-running of the pages. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

Experiencing Geometry

Download Experiencing Geometry PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 438 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Experiencing Geometry by : David Wilson Henderson

Download or read book Experiencing Geometry written by David Wilson Henderson and published by Prentice Hall. This book was released on 2005 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distinctive approach of Henderson and Taimina's volume stimulates readers to develop a broader, deeper, understanding of mathematics through active experience--including discovery, discussion, writing fundamental ideas and learning about the history of those ideas. A series of interesting, challenging problems encourage readers to gather and discuss their reasonings and understanding. The volume provides an understanding of the possible shapes of the physical universe. The authors provide extensive information on historical strands of geometry, straightness on cylinders and cones and hyperbolic planes, triangles and congruencies, area and holonomy, parallel transport, SSS, ASS, SAA, and AAA, parallel postulates, isometries and patterns, dissection theory, square roots, pythagoras and similar triangles, projections of a sphere onto a plane, inversions in circles, projections (models) of hyperbolic planes, trigonometry and duality, 3-spheres and hyperbolic 3-spaces and polyhedra. For mathematics educators and other who need to understand the meaning of geometry.

Bibliography of Non-Euclidean Geometry

Download Bibliography of Non-Euclidean Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 403 pages
Book Rating : 4.:/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Bibliography of Non-Euclidean Geometry by : Duncan M'Laren Young Sommerville

Download or read book Bibliography of Non-Euclidean Geometry written by Duncan M'Laren Young Sommerville and published by . This book was released on 1911 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry from a Differentiable Viewpoint

Download Geometry from a Differentiable Viewpoint PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521116074
Total Pages : 375 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Geometry from a Differentiable Viewpoint by : John McCleary

Download or read book Geometry from a Differentiable Viewpoint written by John McCleary and published by Cambridge University Press. This book was released on 2013 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.

Foundations of Projective Geometry

Download Foundations of Projective Geometry PDF Online Free

Author :
Publisher : Ishi Press
ISBN 13 : 9784871878371
Total Pages : 190 pages
Book Rating : 4.8/5 (783 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Projective Geometry by : Robin Hartshorne

Download or read book Foundations of Projective Geometry written by Robin Hartshorne and published by Ishi Press. This book was released on 2009 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first geometrical properties of a projective nature were discovered in the third century by Pappus of Alexandria. Filippo Brunelleschi (1404-1472) started investigating the geometry of perspective in 1425. Johannes Kepler (1571-1630) and Gerard Desargues (1591-1661) independently developed the pivotal concept of the "point at infinity." Desargues developed an alternative way of constructing perspective drawings by generalizing the use of vanishing points to include the case when these are infinitely far away. He made Euclidean geometry, where parallel lines are truly parallel, into a special case of an all-encompassing geometric system. Desargues's study on conic sections drew the attention of 16-years old Blaise Pascal and helped him formulate Pascal's theorem. The works of Gaspard Monge at the end of 18th and beginning of 19th century were important for the subsequent development of projective geometry. The work of Desargues was ignored until Michel Chasles chanced upon a handwritten copy in 1845. Meanwhile, Jean-Victor Poncelet had published the foundational treatise on projective geometry in 1822. Poncelet separated the projective properties of objects in individual class and establishing a relationship between metric and projective properties. The non-Euclidean geometries discovered shortly thereafter were eventually demonstrated to have models, such as the Klein model of hyperbolic space, relating to projective geometry.

Introduction to Non-Euclidean Geometry

Download Introduction to Non-Euclidean Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486498506
Total Pages : 274 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Non-Euclidean Geometry by : Harold E. Wolfe

Download or read book Introduction to Non-Euclidean Geometry written by Harold E. Wolfe and published by Courier Corporation. This book was released on 2012-01-01 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first college-level texts for elementary courses in non-Euclidean geometry, this volumeis geared toward students familiar with calculus. Topics include the fifth postulate, hyperbolicplane geometry and trigonometry, and elliptic plane geometry and trigonometry. Extensiveappendixes offer background information on Euclidean geometry, and numerous exercisesappear throughout the text.Reprint of the Holt, Rinehart & Winston, Inc., New York, 1945 edition