Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510255
Total Pages : 762 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510204
Total Pages : 491 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Advanced Mean Field Methods

Download Advanced Mean Field Methods PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262150545
Total Pages : 300 pages
Book Rating : 4.1/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Advanced Mean Field Methods by : Manfred Opper

Download or read book Advanced Mean Field Methods written by Manfred Opper and published by MIT Press. This book was released on 2001 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Lifetime Data: Models in Reliability and Survival Analysis

Download Lifetime Data: Models in Reliability and Survival Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475756542
Total Pages : 392 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Lifetime Data: Models in Reliability and Survival Analysis by : Nicholas P. Jewell

Download or read book Lifetime Data: Models in Reliability and Survival Analysis written by Nicholas P. Jewell and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical models and methods for lifetime and other time-to-event data are widely used in many fields, including medicine, the environmental sciences, actuarial science, engineering, economics, management, and the social sciences. For example, closely related statistical methods have been applied to the study of the incubation period of diseases such as AIDS, the remission time of cancers, life tables, the time-to-failure of engineering systems, employment duration, and the length of marriages. This volume contains a selection of papers based on the 1994 International Research Conference on Lifetime Data Models in Reliability and Survival Analysis, held at Harvard University. The conference brought together a varied group of researchers and practitioners to advance and promote statistical science in the many fields that deal with lifetime and other time-to-event-data. The volume illustrates the depth and diversity of the field. A few of the authors have published their conference presentations in the new journal Lifetime Data Analysis (Kluwer Academic Publishers).

High-dimensional Data Analysis

Download High-dimensional Data Analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9787894236326
Total Pages : 318 pages
Book Rating : 4.2/5 (363 download)

DOWNLOAD NOW!


Book Synopsis High-dimensional Data Analysis by : Tony Cai;Xiaotong Shen

Download or read book High-dimensional Data Analysis written by Tony Cai;Xiaotong Shen and published by . This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Handbook of Neuroimaging Data Analysis

Download Handbook of Neuroimaging Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315356201
Total Pages : 907 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Neuroimaging Data Analysis by : Hernando Ombao

Download or read book Handbook of Neuroimaging Data Analysis written by Hernando Ombao and published by CRC Press. This book was released on 2016-11-18 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Statistical Analysis for High-Dimensional Data

Download Statistical Analysis for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319270990
Total Pages : 313 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis for High-Dimensional Data by : Arnoldo Frigessi

Download or read book Statistical Analysis for High-Dimensional Data written by Arnoldo Frigessi and published by Springer. This book was released on 2016-02-16 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Contemporary Multivariate Analysis and Design of Experiments

Download Contemporary Multivariate Analysis and Design of Experiments PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812567763
Total Pages : 470 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Contemporary Multivariate Analysis and Design of Experiments by : Kaitai Fang

Download or read book Contemporary Multivariate Analysis and Design of Experiments written by Kaitai Fang and published by World Scientific. This book was released on 2005 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Index. Subject index -- Author index

Handbook of Statistical Genomics

Download Handbook of Statistical Genomics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119429145
Total Pages : 1223 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Genomics by : David J. Balding

Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-09-10 with total page 1223 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.

Case Studies in Applied Bayesian Data Science

Download Case Studies in Applied Bayesian Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030425533
Total Pages : 415 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Applied Bayesian Data Science by : Kerrie L. Mengersen

Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.

Current Trends in Bayesian Methodology with Applications

Download Current Trends in Bayesian Methodology with Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482235129
Total Pages : 674 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Current Trends in Bayesian Methodology with Applications by : Satyanshu K. Upadhyay

Download or read book Current Trends in Bayesian Methodology with Applications written by Satyanshu K. Upadhyay and published by CRC Press. This book was released on 2015-05-21 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics. Each chapter is self-contained and focuses on a Bayesian methodology. It gives an overview of the area, presents theoretical insights, and emphasizes applications through motivating examples. This book reflects the diversity of Bayesian analysis, from novel Bayesian methodology, such as nonignorable response and factor analysis, to state-of-the-art applications in economics, astrophysics, biomedicine, oceanography, and other areas. It guides readers in using Bayesian techniques for a range of statistical analyses.

Bayesian Mediation Analysis using R

Download Bayesian Mediation Analysis using R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040009484
Total Pages : 204 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Mediation Analysis using R by : Atanu Bhattacharjee

Download or read book Bayesian Mediation Analysis using R written by Atanu Bhattacharjee and published by CRC Press. This book was released on 2024-07-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into the realm of statistical methodology for mediation analysis with a Bayesian perspective in high dimensional data through this comprehensive guide. Focused on various forms of time-to-event data methodologies, this book helps readers master the application of Bayesian mediation analysis using R. Across ten chapters, this book explores concepts of mediation analysis, survival analysis, accelerated failure time modeling, longitudinal data analysis, and competing risk modeling. Each chapter progressively unravels intricate topics, from the foundations of Bayesian approaches to advanced techniques like variable selection, bivariate survival models, and Dirichlet process priors. With practical examples and step-by-step guidance, this book empowers readers to navigate the intricate landscape of high-dimensional data analysis, fostering a deep understanding of its applications and significance in diverse fields.

E-Technologies: Embracing the Internet of Things

Download E-Technologies: Embracing the Internet of Things PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319590413
Total Pages : 325 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis E-Technologies: Embracing the Internet of Things by : Esma Aïmeur

Download or read book E-Technologies: Embracing the Internet of Things written by Esma Aïmeur and published by Springer. This book was released on 2017-05-10 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 7th International Conference on E-Technologies, MCETECH 2017, held in Ottawa, ON, Canada, in May 2017. This year’s conference drew special attention to the ever-increasing role of the Internet of Things (IoT); and the contributions span a variety of application domains such as e-Commerce, e-Health, e-Learning, and e-Justice, comprising research from models and architectures, methodology proposals, prototype implementations, and empirical validation of theoretical models. The 19 papers presented were carefully reviewed and selected from 48 submissions. They were organized in topical sections named: pervasive computing and smart applications; security, privacy and trust; process modeling and adaptation; data analytics and machine learning; and e-health and e-commerce.

Principles and Methods for Data Science

Download Principles and Methods for Data Science PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444642129
Total Pages : 498 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Principles and Methods for Data Science by :

Download or read book Principles and Methods for Data Science written by and published by Elsevier. This book was released on 2020-05-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Principles and Methods for Data Science

Statistics for High-Dimensional Data

Download Statistics for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364220192X
Total Pages : 568 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann

Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.