Artificial Neural Networks and Machine Learning - ICANN 2011

Download Artificial Neural Networks and Machine Learning - ICANN 2011 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642217354
Total Pages : 409 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning - ICANN 2011 by : Timo Honkela

Download or read book Artificial Neural Networks and Machine Learning - ICANN 2011 written by Timo Honkela and published by Springer. This book was released on 2011-06-13 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.

Future Communication Technology and Engineering

Download Future Communication Technology and Engineering PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315690454
Total Pages : 356 pages
Book Rating : 4.3/5 (156 download)

DOWNLOAD NOW!


Book Synopsis Future Communication Technology and Engineering by : Kennis Chan

Download or read book Future Communication Technology and Engineering written by Kennis Chan and published by CRC Press. This book was released on 2015-04-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future Communication Technology and Engineering is a collection of papers presented at the 2014 International Conference on Future Communication Technology and Engineering (Shenzhen, China 16-17 November 2014). Covering a wide range of topics (communication systems, automation and control engineering, electrical engineering), the book includes the

Efficient Learning Machines

Download Efficient Learning Machines PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1430259906
Total Pages : 263 pages
Book Rating : 4.4/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Efficient Learning Machines by : Mariette Awad

Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Lifelong Machine Learning, Second Edition

Download Lifelong Machine Learning, Second Edition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015819
Total Pages : 187 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Lifelong Machine Learning, Second Edition by : Zhiyuan Sun

Download or read book Lifelong Machine Learning, Second Edition written by Zhiyuan Sun and published by Springer Nature. This book was released on 2022-06-01 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

Introduction to Semi-Supervised Learning

Download Introduction to Semi-Supervised Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015487
Total Pages : 116 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Semi-Supervised Learning by : Xiaojin Geffner

Download or read book Introduction to Semi-Supervised Learning written by Xiaojin Geffner and published by Springer Nature. This book was released on 2022-05-31 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Semi-Supervised Learning

Download Semi-Supervised Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262514125
Total Pages : 525 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Semi-Supervised Learning by : Olivier Chapelle

Download or read book Semi-Supervised Learning written by Olivier Chapelle and published by MIT Press. This book was released on 2010-01-22 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications

Download Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444640436
Total Pages : 540 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications by :

Download or read book Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications written by and published by Elsevier. This book was released on 2018-08-27 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications, Volume 38, the latest release in this monograph that provides a cohesive and integrated exposition of these advances and associated applications, includes new chapters on Linguistics: Core Concepts and Principles, Grammars, Open-Source Libraries, Application Frameworks, Workflow Systems, Mathematical Essentials, Probability, Inference and Prediction Methods, Random Processes, Bayesian Methods, Machine Learning, Artificial Neural Networks for Natural Language Processing, Information Retrieval, Language Core Tasks, Language Understanding Applications, and more. The synergistic confluence of linguistics, statistics, big data, and high-performance computing is the underlying force for the recent and dramatic advances in analyzing and understanding natural languages, hence making this series all the more important. - Provides a thorough treatment of open-source libraries, application frameworks and workflow systems for natural language analysis and understanding - Presents new chapters on Linguistics: Core Concepts and Principles, Grammars, Open-Source Libraries, Application Frameworks, Workflow Systems, Mathematical Essentials, Probability, and more

Applications of Topic Models

Download Applications of Topic Models PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680833089
Total Pages : 163 pages
Book Rating : 4.8/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Applications of Topic Models by : Jordan Boyd-Graber

Download or read book Applications of Topic Models written by Jordan Boyd-Graber and published by Now Publishers. This book was released on 2017-07-13 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes recent academic and industrial applications of topic models with the goal of launching a young researcher capable of building their own applications of topic models.

Representation Learning for Natural Language Processing

Download Representation Learning for Natural Language Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811555737
Total Pages : 319 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Representation Learning for Natural Language Processing by : Zhiyuan Liu

Download or read book Representation Learning for Natural Language Processing written by Zhiyuan Liu and published by Springer Nature. This book was released on 2020-07-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Social Network Data Analytics

Download Social Network Data Analytics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441984623
Total Pages : 508 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Social Network Data Analytics by : Charu C. Aggarwal

Download or read book Social Network Data Analytics written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Encyclopedia of Machine Learning

Download Encyclopedia of Machine Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387307680
Total Pages : 1061 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Machine Learning by : Claude Sammut

Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Modern Multivariate Statistical Techniques

Download Modern Multivariate Statistical Techniques PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387781897
Total Pages : 757 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Modern Multivariate Statistical Techniques by : Alan J. Izenman

Download or read book Modern Multivariate Statistical Techniques written by Alan J. Izenman and published by Springer Science & Business Media. This book was released on 2009-03-02 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

The Perceptron

Download The Perceptron PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 290 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis The Perceptron by : Frank Rosenblatt

Download or read book The Perceptron written by Frank Rosenblatt and published by . This book was released on 1958 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Embeddings in Natural Language Processing

Download Embeddings in Natural Language Processing PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1636390226
Total Pages : 177 pages
Book Rating : 4.6/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Embeddings in Natural Language Processing by : Mohammad Taher Pilehvar

Download or read book Embeddings in Natural Language Processing written by Mohammad Taher Pilehvar and published by Morgan & Claypool Publishers. This book was released on 2020-11-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

Mixtures

Download Mixtures PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119998441
Total Pages : 352 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Mixtures by : Kerrie L. Mengersen

Download or read book Mixtures written by Kerrie L. Mengersen and published by John Wiley & Sons. This book was released on 2011-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.

Foundations of Statistical Natural Language Processing

Download Foundations of Statistical Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262303795
Total Pages : 719 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Statistical Natural Language Processing by : Christopher Manning

Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Frontiers in Massive Data Analysis

Download Frontiers in Massive Data Analysis PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309287812
Total Pages : 191 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Massive Data Analysis by : National Research Council

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.