Bayesian Inference in Wavelet-Based Models

Download Bayesian Inference in Wavelet-Based Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461205670
Total Pages : 406 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference in Wavelet-Based Models by : Peter Müller

Download or read book Bayesian Inference in Wavelet-Based Models written by Peter Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.

Bayesian Thinking, Modeling and Computation

Download Bayesian Thinking, Modeling and Computation PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080461174
Total Pages : 1062 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Thinking, Modeling and Computation by :

Download or read book Bayesian Thinking, Modeling and Computation written by and published by Elsevier. This book was released on 2005-11-29 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics

Multiscale Signal Analysis and Modeling

Download Multiscale Signal Analysis and Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461441447
Total Pages : 388 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Signal Analysis and Modeling by : Xiaoping Shen

Download or read book Multiscale Signal Analysis and Modeling written by Xiaoping Shen and published by Springer Science & Business Media. This book was released on 2012-09-18 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.

Statistical Modeling by Wavelets

Download Statistical Modeling by Wavelets PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470317868
Total Pages : 410 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modeling by Wavelets by : Brani Vidakovic

Download or read book Statistical Modeling by Wavelets written by Brani Vidakovic and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.

Bayesian Inference for Gene Expression and Proteomics

Download Bayesian Inference for Gene Expression and Proteomics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052186092X
Total Pages : 437 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference for Gene Expression and Proteomics by : Kim-Anh Do

Download or read book Bayesian Inference for Gene Expression and Proteomics written by Kim-Anh Do and published by Cambridge University Press. This book was released on 2006-07-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.

The Oxford Handbook of Applied Bayesian Analysis

Download The Oxford Handbook of Applied Bayesian Analysis PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191613894
Total Pages : 924 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Applied Bayesian Analysis by : Anthony O' Hagan

Download or read book The Oxford Handbook of Applied Bayesian Analysis written by Anthony O' Hagan and published by OUP Oxford. This book was released on 2010-03-18 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.

Wavelet Methods in Statistics with R

Download Wavelet Methods in Statistics with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387759611
Total Pages : 259 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Wavelet Methods in Statistics with R by : Guy Nason

Download or read book Wavelet Methods in Statistics with R written by Guy Nason and published by Springer Science & Business Media. This book was released on 2010-07-25 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains information on how to tackle many important problems using a multiscale statistical approach. It focuses on how to use multiscale methods and discusses methodological and applied considerations.

An Introduction to Bayesian Analysis

Download An Introduction to Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387354336
Total Pages : 356 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Bayesian Analysis by : Jayanta K. Ghosh

Download or read book An Introduction to Bayesian Analysis written by Jayanta K. Ghosh and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.

Case Studies in Bayesian Statistics

Download Case Studies in Bayesian Statistics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1461220785
Total Pages : 384 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Bayesian Statistics by : Constantine Gatsonis

Download or read book Case Studies in Bayesian Statistics written by Constantine Gatsonis and published by Springer. This book was released on 2018-08-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains invited case studies with the accompanying discussion as well as contributed papers selected by a refereeing process of 6th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University in October, 2001.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Download Energy Minimization Methods in Computer Vision and Pattern Recognition PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540450637
Total Pages : 540 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Energy Minimization Methods in Computer Vision and Pattern Recognition by : Anand Rangarajan

Download or read book Energy Minimization Methods in Computer Vision and Pattern Recognition written by Anand Rangarajan and published by Springer. This book was released on 2003-10-02 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2003, held in Lisbon, Portugal in July 2003.The 33 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in topical sections on unsupervised learning and matching, probabilistic modeling, segmentation and grouping, shape modeling, restoration and reconstruction, and graphs and graph-based methods.

Robust Bayesian Analysis

Download Robust Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461213061
Total Pages : 431 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Robust Bayesian Analysis by : David Rios Insua

Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.

Multiscale Modeling

Download Multiscale Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387708987
Total Pages : 243 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Modeling by : Marco A.R. Ferreira

Download or read book Multiscale Modeling written by Marco A.R. Ferreira and published by Springer Science & Business Media. This book was released on 2007-07-17 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.

Handbook of Bayesian, Fiducial, and Frequentist Inference

Download Handbook of Bayesian, Fiducial, and Frequentist Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003837646
Total Pages : 421 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian, Fiducial, and Frequentist Inference by : James Berger

Download or read book Handbook of Bayesian, Fiducial, and Frequentist Inference written by James Berger and published by CRC Press. This book was released on 2024-02-26 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emergence of data science, in recent decades, has magnified the need for efficient methodology for analyzing data and highlighted the importance of statistical inference. Despite the tremendous progress that has been made, statistical science is still a young discipline and continues to have several different and competing paths in its approaches and its foundations. While the emergence of competing approaches is a natural progression of any scientific discipline, differences in the foundations of statistical inference can sometimes lead to different interpretations and conclusions from the same dataset. The increased interest in the foundations of statistical inference has led to many publications, and recent vibrant research activities in statistics, applied mathematics, philosophy and other fields of science reflect the importance of this development. The BFF approaches not only bridge foundations and scientific learning, but also facilitate objective and replicable scientific research, and provide scalable computing methodologies for the analysis of big data. Most of the published work typically focusses on a single topic or theme, and the body of work is scattered in different journals. This handbook provides a comprehensive introduction and broad overview of the key developments in the BFF schools of inference. It is intended for researchers and students who wish for an overview of foundations of inference from the BFF perspective and provides a general reference for BFF inference. Key Features: Provides a comprehensive introduction to the key developments in the BFF schools of inference Gives an overview of modern inferential methods, allowing scientists in other fields to expand their knowledge Is accessible for readers with different perspectives and backgrounds

Wavelets In Soft Computing (Second Edition)

Download Wavelets In Soft Computing (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811264031
Total Pages : 320 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Wavelets In Soft Computing (Second Edition) by : Marc Thuillard

Download or read book Wavelets In Soft Computing (Second Edition) written by Marc Thuillard and published by World Scientific. This book was released on 2022-09-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The comprehensive compendium furnishes a quick and efficient entry point to many multiresolution techniques and facilitates the transition from an idea into a real project. It focuses on methods combining several soft computing techniques (fuzzy logic, neural networks, genetic algorithms) in a multiresolution framework.Illustrated with numerous vivid examples, this useful volume gives the reader the necessary theoretical background to decide which methods suit his/her needs.New materials and applications for multiresolution analysis are added, including notable research topics such as deep learning, graphs, and network analysis.

Statistics in the 21st Century

Download Statistics in the 21st Century PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420035398
Total Pages : 571 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Statistics in the 21st Century by : Adrian E. Raftery

Download or read book Statistics in the 21st Century written by Adrian E. Raftery and published by CRC Press. This book was released on 2001-07-09 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses an important area of statistics and highlights the most important statistical advances. It is divided into four sections: statistics in the life and medical sciences, business and social science, the physical sciences and engineering, and theory and methods of statistics.

Model Selection

Download Model Selection PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600522
Total Pages : 262 pages
Book Rating : 4.6/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Model Selection by : Parhasarathi Lahiri

Download or read book Model Selection written by Parhasarathi Lahiri and published by IMS. This book was released on 2001 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Bayesian Data Analysis, Second Edition

Download Bayesian Data Analysis, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420057294
Total Pages : 717 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Second Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Second Edition written by Andrew Gelman and published by CRC Press. This book was released on 2003-07-29 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.