Proximal Algorithms

Download Proximal Algorithms PDF Online Free

Author :
Publisher : Now Pub
ISBN 13 : 9781601987167
Total Pages : 130 pages
Book Rating : 4.9/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Proximal Algorithms by : Neal Parikh

Download or read book Proximal Algorithms written by Neal Parikh and published by Now Pub. This book was released on 2013-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Download Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 160198460X
Total Pages : 138 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd

Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Convex Optimization Algorithms

Download Convex Optimization Algorithms PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529280
Total Pages : 576 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Algorithms by : Dimitri Bertsekas

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Constrained Optimization and Lagrange Multiplier Methods

Download Constrained Optimization and Lagrange Multiplier Methods PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 148326047X
Total Pages : 412 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Constrained Optimization and Lagrange Multiplier Methods by : Dimitri P. Bertsekas

Download or read book Constrained Optimization and Lagrange Multiplier Methods written by Dimitri P. Bertsekas and published by Academic Press. This book was released on 2014-05-10 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Non-Smooth and Complementarity-Based Distributed Parameter Systems

Download Non-Smooth and Complementarity-Based Distributed Parameter Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030793931
Total Pages : 518 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Non-Smooth and Complementarity-Based Distributed Parameter Systems by : Michael Hintermüller

Download or read book Non-Smooth and Complementarity-Based Distributed Parameter Systems written by Michael Hintermüller and published by Springer Nature. This book was released on 2022-02-18 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.

Optimal Control of ODEs and DAEs

Download Optimal Control of ODEs and DAEs PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110797895
Total Pages : 484 pages
Book Rating : 4.1/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Optimal Control of ODEs and DAEs by : Matthias Gerdts

Download or read book Optimal Control of ODEs and DAEs written by Matthias Gerdts and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-11-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Practical Augmented Lagrangian Methods for Constrained Optimization

Download Practical Augmented Lagrangian Methods for Constrained Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197335X
Total Pages : 222 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Practical Augmented Lagrangian Methods for Constrained Optimization by : Ernesto G. Birgin

Download or read book Practical Augmented Lagrangian Methods for Constrained Optimization written by Ernesto G. Birgin and published by SIAM. This book was released on 2014-04-30 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on Augmented Lagrangian techniques for solving practical constrained optimization problems. The authors rigorously delineate mathematical convergence theory based on sequential optimality conditions and novel constraint qualifications. They also orient the book to practitioners by giving priority to results that provide insight on the practical behavior of algorithms and by providing geometrical and algorithmic interpretations of every mathematical result, and they fully describe a freely available computational package for constrained optimization and illustrate its usefulness with applications.

Convex Optimization Theory

Download Convex Optimization Theory PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529310
Total Pages : 256 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas

Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

First-order and Stochastic Optimization Methods for Machine Learning

Download First-order and Stochastic Optimization Methods for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030395685
Total Pages : 591 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Convex Analysis and Optimization

Download Convex Analysis and Optimization PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529450
Total Pages : 560 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization by : Dimitri Bertsekas

Download or read book Convex Analysis and Optimization written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2003-03-01 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

First-Order Methods in Optimization

Download First-Order Methods in Optimization PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611974984
Total Pages : 476 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis First-Order Methods in Optimization by : Amir Beck

Download or read book First-Order Methods in Optimization written by Amir Beck and published by SIAM. This book was released on 2017-10-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Advanced Structured Prediction

Download Advanced Structured Prediction PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262028379
Total Pages : 430 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Advanced Structured Prediction by : Sebastian Nowozin

Download or read book Advanced Structured Prediction written by Sebastian Nowozin and published by MIT Press. This book was released on 2014-12-05 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs. The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný

Large-Scale Convex Optimization

Download Large-Scale Convex Optimization PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009160850
Total Pages : 319 pages
Book Rating : 4.0/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Convex Optimization by : Ernest K. Ryu

Download or read book Large-Scale Convex Optimization written by Ernest K. Ryu and published by Cambridge University Press. This book was released on 2022-11-30 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators.

Optimization with Sparsity-Inducing Penalties

Download Optimization with Sparsity-Inducing Penalties PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601985101
Total Pages : 124 pages
Book Rating : 4.9/5 (851 download)

DOWNLOAD NOW!


Book Synopsis Optimization with Sparsity-Inducing Penalties by : Francis Bach

Download or read book Optimization with Sparsity-Inducing Penalties written by Francis Bach and published by . This book was released on 2011-12-23 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Topics in Nonconvex Optimization

Download Topics in Nonconvex Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441996400
Total Pages : 276 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Topics in Nonconvex Optimization by : Shashi K. Mishra

Download or read book Topics in Nonconvex Optimization written by Shashi K. Mishra and published by Springer Science & Business Media. This book was released on 2011-05-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.

Numerical Optimization

Download Numerical Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387400656
Total Pages : 686 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Numerical Optimization by : Jorge Nocedal

Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Nonlinear Programming

Download Nonlinear Programming PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971316
Total Pages : 226 pages
Book Rating : 4.9/5 (713 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Programming by : Anthony V. Fiacco

Download or read book Nonlinear Programming written by Anthony V. Fiacco and published by SIAM. This book was released on 1990-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent interest in interior point methods generated by Karmarkar's Projective Scaling Algorithm has created a new demand for this book because the methods that have followed from Karmarkar's bear a close resemblance to those described. There is no other source for the theoretical background of the logarithmic barrier function and other classical penalty functions. Analyzes in detail the "central" or "dual" trajectory used by modern path following and primal/dual methods for convex and general linear programming. As researchers begin to extend these methods to convex and general nonlinear programming problems, this book will become indispensable to them.