Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Asymtotic Expansion Of Certain Fourier Integrals Via The Method Of Stationary Phase
Download Asymtotic Expansion Of Certain Fourier Integrals Via The Method Of Stationary Phase full books in PDF, epub, and Kindle. Read online Asymtotic Expansion Of Certain Fourier Integrals Via The Method Of Stationary Phase ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Asymptotic Expansions of Integrals by : Norman Bleistein
Download or read book Asymptotic Expansions of Integrals written by Norman Bleistein and published by Courier Corporation. This book was released on 1986-01-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Book Synopsis Asymptotic Approximations of Integrals by : R. Wong
Download or read book Asymptotic Approximations of Integrals written by R. Wong and published by Academic Press. This book was released on 2014-05-10 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.
Book Synopsis Geometric Asymptotics by : Victor Guillemin
Download or read book Geometric Asymptotics written by Victor Guillemin and published by American Mathematical Soc.. This book was released on 1990 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.
Book Synopsis Asymptotic Methods for Integrals by : Nico M. Temme
Download or read book Asymptotic Methods for Integrals written by Nico M. Temme and published by World Scientific Publishing Company. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals. The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on.
Book Synopsis Asymptotics and Borel Summability by : Ovidiu Costin
Download or read book Asymptotics and Borel Summability written by Ovidiu Costin and published by CRC Press. This book was released on 2008-12-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr
Book Synopsis Fourier Integral Operators by : J.J. Duistermaat
Download or read book Fourier Integral Operators written by J.J. Duistermaat and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
Book Synopsis Analytic Combinatorics in Several Variables by : Robin Pemantle
Download or read book Analytic Combinatorics in Several Variables written by Robin Pemantle and published by Cambridge University Press. This book was released on 2013-05-31 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Book Synopsis Asymptotics and Mellin-Barnes Integrals by : R. B. Paris
Download or read book Asymptotics and Mellin-Barnes Integrals written by R. B. Paris and published by Cambridge University Press. This book was released on 2001-09-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.
Book Synopsis Advanced Mathematical Methods with Maple by : Derek Richards
Download or read book Advanced Mathematical Methods with Maple written by Derek Richards and published by Cambridge University Press. This book was released on 2002 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: A user-friendly student guide to computer-assisted algebra with mathematical software packages such as Maple.
Book Synopsis Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions by : Thomas Trogdon
Download or read book Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions written by Thomas Trogdon and published by SIAM. This book was released on 2015-12-22 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?
Book Synopsis Asymptotic Methods in Analysis by : N. G. de Bruijn
Download or read book Asymptotic Methods in Analysis written by N. G. de Bruijn and published by Courier Corporation. This book was released on 2014-03-05 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Book Synopsis Applied Asymptotic Analysis by : Peter David Miller
Download or read book Applied Asymptotic Analysis written by Peter David Miller and published by American Mathematical Soc.. This book was released on 2006 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Book Synopsis The Selected Works of Roderick S C Wong by : Dan Dai
Download or read book The Selected Works of Roderick S C Wong written by Dan Dai and published by World Scientific. This book was released on 2015-08-06 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overview of the author's work which includes significant discoveries and pioneering contributions, such as his deep analysis on asymptotic approximations of integrals and uniform asymptotic expansions of orthogonal polynomials and special functions; his important contributions to perturbation methods for ordinary differential equations and difference equations; and his advocation of the Riemann–Hilbert approach for global asymptotics of orthogonal polynomials. The book is an essential source of reference for mathematicians, statisticians, engineers, and physicists. It is also a suitable reading for graduate students and interested senior year undergraduate students. Contents:Volume 1:The Asymptotic Behaviour of μ(z, β,α)A Generalization of Watson's LemmaLinear Equations in Infinite MatricesAsymptotic Solutions of Linear Volterra Integral Equations with Singular KernelsOn Infinite Systems of Linear Differential EquationsError Bounds for Asymptotic Expansions of HankelExplicit Error Terms for Asymptotic Expansions of StieltjesExplicit Error Terms for Asymptotic Expansions of MellinAsymptotic Expansion of Multiple Fourier TransformsExact Remainders for Asymptotic Expansions of FractionalAsymptotic Expansion of the Hilbert TransformError Bounds for Asymptotic Expansions of IntegralsDistributional Derivation of an Asymptotic ExpansionOn a Method of Asymptotic Evaluation of Multiple IntegralsAsymptotic Expansion of the Lebesgue Constants Associated with Polynomial InterpolationQuadrature Formulas for Oscillatory Integral TransformsGeneralized Mellin Convolutions and Their Asymptotic Expansions,A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error BoundsAsymptotic Expansion of a Multiple IntegralAsymptotic Expansion of a Double Integral with a Curve of Stationary PointsSzegö's Conjecture on Lebesgue Constants for Legendre SeriesUniform Asymptotic Expansions of Laguerre PolynomialsTransformation to Canonical Form for Uniform Asymptotic ExpansionsMultidimensional Stationary Phase Approximation: Boundary Stationary PointTwo-Dimensional Stationary Phase Approximation: Stationary Point at a CornerAsymptotic Expansions for Second-Order Linear Difference EquationsAsymptotic Expansions for Second-Order Linear Difference Equations, IIAsymptotic Behaviour of the Fundamental Solution to ∂u/∂t = –(–Δ)muA Bernstein-Type Inequality for the Jacobi PolynomialError Bounds for Asymptotic Expansions of Laplace ConvolutionsVolume 2:Asymptotic Behavior of the Pollaczek Polynomials and Their ZerosJustification of the Stationary Phase Approximation in Time-Domain AsymptoticsAsymptotic Expansions of the Generalized Bessel PolynomialsUniform Asymptotic Expansions for Meixner Polynomials"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function Jν(x)Justification of a Perturbation Approximation of the Klein–Gordon EquationSmoothing of Stokes's Discontinuity for the Generalized Bessel Function. IIUniform Asymptotic Expansions of a Double Integral: Coalescence of Two Stationary PointsUniform Asymptotic Formula for Orthogonal Polynomials with Exponential WeightOn the Asymptotics of the Meixner–Pollaczek Polynomials and Their ZerosGevrey Asymptotics and Stieltjes Transforms of Algebraically Decaying FunctionsExponential Asymptotics of the Mittag–Leffler FunctionOn the Ackerberg–O'Malley ResonanceAsymptotic Expansions for Second-Order Linear Difference Equations with a Turning PointOn a Two-Point Boundary-Value Problem with Spurious SolutionsShooting Method for Nonlinear Singularly Perturbed Boundary-Value ProblemsVolume 3:Asymptotic Expansion of the Krawtchouk Polynomials and Their ZerosOn a Uniform Treatment of Darboux's MethodLinear Difference Equations with Transition PointsUniform Asymptotics for Jacobi Polynomials with Varying Large Negative Parameters — A Riemann–Hilbert ApproachUniform Asymptotics of the Stieltjes–Wigert Polynomials via the Riemann–Hilbert ApproachA Singularly Perturbed Boundary-Value Problem Arising in Phase TransitionsOn the Number of Solutions to Carrier's ProblemAsymptotic Expansions for Riemann–Hilbert ProblemsOn the Connection Formulas of the Third Painlevé TranscendentHyperasymptotic Expansions of the Modified Bessel Function of the Third Kind of Purely Imaginary OrderGlobal Asymptotics for Polynomials Orthogonal with Exponential Quartic WeightThe Riemann–Hilbert Approach to Global Asymptotics of Discrete Orthogonal Polynomials with Infinite NodesGlobal Asymptotics of the Meixner PolynomialsAsymptotics of Orthogonal Polynomials via Recurrence RelationsUniform Asymptotic Expansions for the Discrete Chebyshev PolynomialsGlobal Asymptotics of the Hahn PolynomialsGlobal Asymptotics of Stieltjes–Wigert Polynomials Readership: Undergraduates, gradudates and researchers in the areas of asymptotic approximations of integrals, singular perturbation theory, difference equations and Riemann–Hilbert approach. Key Features:This book provides a broader viewpoint of asymptoticsIt contains about half of the papers that Roderick Wong has written on asymptoticsIt demonstrates how analysis is used to make some formal results mathematically rigorousThis collection presents the scientific achievements of the authorKeywords:Asymptotic Analysis;Perturbation Method;Special Functions;Orthogonal Polynomials;Integral Transforms;Integral Equations;Ordinary Differential Equations;Difference Equations;Riemann–Hilbert Problem
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 1038 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Canadian Journal of Mathematics by :
Download or read book Canadian Journal of Mathematics written by and published by . This book was released on 1989-10 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis NIST Handbook of Mathematical Functions Hardback and CD-ROM by : Frank W. J. Olver
Download or read book NIST Handbook of Mathematical Functions Hardback and CD-ROM written by Frank W. J. Olver and published by Cambridge University Press. This book was released on 2010-05-17 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
Author :Leonid M. Brekhovskikh Publisher :Springer Science & Business Media ISBN 13 :3662027763 Total Pages :405 pages Book Rating :4.6/5 (62 download)
Book Synopsis Acoustics of Layered Media II by : Leonid M. Brekhovskikh
Download or read book Acoustics of Layered Media II written by Leonid M. Brekhovskikh and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the sequel to our book Acoustics of Layered Media I: Plane and Quasi Plane Waves (Springer Ser. Wave Phenom. , Vol. 5). Taken together, these two monographs present a systematic exposition of the theory of sound propagation in inhomogeneous media, which starts from first principles and includes recent results. More advanced topics are considered in this second volume. Although the theory of wave beams and fields of localized sources is more sophisticated than the theory of quasi-plane waves, it embraces a much wider range of interesting problems that are also important for applications. We exploit the results of Acoustics of Layered Media I, as long as it is expedient to consider sound fields as a superposition of plane or quasi-plane waves. However, the knowledgeable reader will view this book as self-contained. Similar topics have been treated in the book by L. M. Brekhovskikh, Waves in Layered Media, the English version of the second edition of which was published by Academic Press in 1980. Since Waves in Layered Media became very popular, we have tried here to retain its spirit. However, the majority of this text is devoted to new material which reflects the significant progress of the theory during recent years. In particular, acoustic fields in a moving fluid are considered and much attention is paid to sound propagation in range dependent environments, which is currently on the leading edge of research activities.