Neural Networks and Statistical Learning

Download Neural Networks and Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1447174526
Total Pages : 996 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Complex-valued Neural Networks

Download Complex-valued Neural Networks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812384642
Total Pages : 387 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Complex-valued Neural Networks by : Akira Hirose

Download or read book Complex-valued Neural Networks written by Akira Hirose and published by World Scientific. This book was released on 2003 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.

Consciousness Transitions

Download Consciousness Transitions PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080554636
Total Pages : 349 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Consciousness Transitions by : Hans Liljenström

Download or read book Consciousness Transitions written by Hans Liljenström and published by Elsevier. This book was released on 2011-10-13 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was not long ago when the consciousness was not considered a problem for science. However, this has now changed and the problem of consciousness is considered the greatest challenge to science. In the last decade, a great number of books and articles have been published in the field, but very few have focused on the how consciousness evolves and develops, and what characterizes the transitions between different conscious states, in animals and humans. This book addresses these questions. Renowned researchers from different fields of science (including neurobiology, evolutionary biology, ethology, cognitive science, computational neuroscience and philosophy) contribute with their results and theories in this book, making it a unique collection of the state-of-the-art of this young field of consciousness studies. First book on the topic Focus on different levels of consciousness, including: Evolutionary, developmental, and functional Highly interdisciplinary

Neural Networks

Download Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642577601
Total Pages : 340 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks by : Berndt Müller

Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.

Supervised Machine Learning for Text Analysis in R

Download Supervised Machine Learning for Text Analysis in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000461971
Total Pages : 402 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Supervised Machine Learning for Text Analysis in R by : Emil Hvitfeldt

Download or read book Supervised Machine Learning for Text Analysis in R written by Emil Hvitfeldt and published by CRC Press. This book was released on 2021-10-22 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Associative Memory Cells: Basic Units of Memory Trace

Download Associative Memory Cells: Basic Units of Memory Trace PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811395012
Total Pages : 281 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Associative Memory Cells: Basic Units of Memory Trace by : Jin-Hui Wang

Download or read book Associative Memory Cells: Basic Units of Memory Trace written by Jin-Hui Wang and published by Springer Nature. This book was released on 2019-09-10 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on associative memory cells and their working principles, which can be applied to associative memories and memory-relevant cognitions. Providing comprehensive diagrams, it presents the author's personal perspectives on pathology and therapeutic strategies for memory deficits in patients suffering from neurological diseases and psychiatric disorders. Associative learning is a common approach to acquire multiple associated signals, including knowledge, experiences and skills from natural environments or social interaction. The identification of the cellular and molecular mechanisms underlying associative memory is important in furthering our understanding of the principles of memory formation and memory-relevant behaviors as well as in developing therapeutic strategies that enhance memory capacity in healthy individuals and improve memory deficit in patients suffering from neurological disease and psychiatric disorders. Although a series of hypotheses about neural substrates for associative memory has been proposed, numerous questions still need to be addressed, especially the basic units and their working principle in engrams and circuits specific for various memory patterns. This book summarizes the developments concerning associative memory cells reported in current and past literature, providing a valuable overview of the field for neuroscientists, psychologists and students.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030041670
Total Pages : 664 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Long Cheng

Download or read book Neural Information Processing written by Long Cheng and published by Springer. This book was released on 2018-12-03 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 11301, is organized in topical sections on deep neural networks, convolutional neural networks, recurrent neural networks, and spiking neural networks.

Oscillatory Neural Networks

Download Oscillatory Neural Networks PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110269201
Total Pages : 172 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Oscillatory Neural Networks by : Margarita G. Kuzmina

Download or read book Oscillatory Neural Networks written by Margarita G. Kuzmina and published by Walter de Gruyter. This book was released on 2013-11-27 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding of the human brain functioning currently represents a challenging problem. In contrast to usual serial computers and complicated hierarchically organized artificial man-made systems, decentralized, parallel and distributed information processing principles are inherent to the brain. Besides adaptation and learning, which play a crucial role in brain functioning, oscillatory neural activity, synchronization and resonance accompany the brain work. Neural-like oscillatory network models, designed by the authors for image processing, allow to elucidate the capabilities of dynamical, synchronization-based types of image processing, presumably exploited by the brain. The oscillatory network models, studied by means of computer modeling and qualitative analysis, are presented and discussed in the book. Some other problems of parallel distributed information processing are also considered, such as a recall process from network memory for large-scale recurrent associative memory neural networks, performance of oscillatory networks of associative memory, dynamical oscillatory network methods of image processing with synchronization-based performance, optical parallel information processing based on the nonlinear optical phenomenon of photon echo, and modeling random electric fields of quasi-monochromatic polarized light beams using systems of superposed stochastic oscillators. This makes the book highly interesting to researchers dealing with various aspects of parallel information processing.

Neural Networks and Deep Learning Fundamentals

Download Neural Networks and Deep Learning Fundamentals PDF Online Free

Author :
Publisher : Leilani Katie Publication
ISBN 13 : 9363482324
Total Pages : 199 pages
Book Rating : 4.3/5 (634 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Deep Learning Fundamentals by : Dr.Kuncham Sreenivasa Rao

Download or read book Neural Networks and Deep Learning Fundamentals written by Dr.Kuncham Sreenivasa Rao and published by Leilani Katie Publication. This book was released on 2024-07-08 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr.Kuncham Sreenivasa Rao, Associate Professor, Department of Computer Science and Engineering, Faculty of Science and Technology (ICFAI Tech), ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana, India. Dr.Ugendhar Addagatla, Associate Professor, Department of Computer Science and Engineering, Maturi Venkata Subba Rao (MVSR) Engineering College, Nadergul, Hyderabad, Telangana, India. Dr.Rajitha Kotoju, Assistant Professor, Department of Computer Science and Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana, India.

Complex-Valued Neural Networks with Multi-Valued Neurons

Download Complex-Valued Neural Networks with Multi-Valued Neurons PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642203523
Total Pages : 273 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Complex-Valued Neural Networks with Multi-Valued Neurons by : Igor Aizenberg

Download or read book Complex-Valued Neural Networks with Multi-Valued Neurons written by Igor Aizenberg and published by Springer Science & Business Media. This book was released on 2011-06-24 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.

Springer Handbook of Computational Intelligence

Download Springer Handbook of Computational Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662435055
Total Pages : 1637 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Computational Intelligence by : Janusz Kacprzyk

Download or read book Springer Handbook of Computational Intelligence written by Janusz Kacprzyk and published by Springer. This book was released on 2015-05-28 with total page 1637 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.

Neural Networks: Computational Models and Applications

Download Neural Networks: Computational Models and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540692258
Total Pages : 310 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang

Download or read book Neural Networks: Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.

Supervised Sequence Labelling with Recurrent Neural Networks

Download Supervised Sequence Labelling with Recurrent Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642247970
Total Pages : 148 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Supervised Sequence Labelling with Recurrent Neural Networks by : Alex Graves

Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Convergence Analysis of Recurrent Neural Networks

Download Convergence Analysis of Recurrent Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475738196
Total Pages : 244 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Convergence Analysis of Recurrent Neural Networks by : Zhang Yi

Download or read book Convergence Analysis of Recurrent Neural Networks written by Zhang Yi and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers. Recent years have recorded a remarkable advance in research and development work on RNNs, both in theoretical research as weIl as actual applications. The field of RNNs is now transforming into a complete and independent subject. From theory to application, from software to hardware, new and exciting results are emerging day after day, reflecting the keen interest RNNs have instilled in everyone, from researchers to practitioners. RNNs contain feedback connections among the neurons, a phenomenon which has led rather naturally to RNNs being regarded as dynamical systems. RNNs can be described by continuous time differential systems, discrete time systems, or functional differential systems, and more generally, in terms of non linear systems. Thus, RNNs have to their disposal, a huge set of mathematical tools relating to dynamical system theory which has tumed out to be very useful in enabling a rigorous analysis of RNNs.

Applications of Artificial Intelligence and Machine Learning

Download Applications of Artificial Intelligence and Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811630674
Total Pages : 738 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Applications of Artificial Intelligence and Machine Learning by : Ankur Choudhary

Download or read book Applications of Artificial Intelligence and Machine Learning written by Ankur Choudhary and published by Springer Nature. This book was released on 2021-07-27 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a collection of peer-reviewed articles from the International Conference on Advances and Applications of Artificial Intelligence and Machine Learning - ICAAAIML 2020. The book covers research in artificial intelligence, machine learning, and deep learning applications in healthcare, agriculture, business, and security. This volume contains research papers from academicians, researchers as well as students. There are also papers on core concepts of computer networks, intelligent system design and deployment, real-time systems, wireless sensor networks, sensors and sensor nodes, software engineering, and image processing. This book will be a valuable resource for students, academics, and practitioners in the industry working on AI applications.

Multimedia Technology and Enhanced Learning

Download Multimedia Technology and Enhanced Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030511006
Total Pages : 507 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Multimedia Technology and Enhanced Learning by : Yu-Dong Zhang

Download or read book Multimedia Technology and Enhanced Learning written by Yu-Dong Zhang and published by Springer Nature. This book was released on 2020-07-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book constitutes the refereed proceedings of the Second International Conference on Multimedia Technology and Enhanced Learning, ICMTEL 2020, held in Leicester, United Kingdom, in April 2020. Due to the COVID-19 pandemic all papers were presented in YouTubeLive. The 83 revised full papers have been selected from 158 submissions. They describe new learning technologies which range from smart school, smart class and smart learning at home and which have been developed from new technologies such as machine learning, multimedia and Internet of Things.

Artificial Mind System

Download Artificial Mind System PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540260721
Total Pages : 300 pages
Book Rating : 4.2/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Artificial Mind System by : Tetsuya Hoya

Download or read book Artificial Mind System written by Tetsuya Hoya and published by Springer Science & Business Media. This book was released on 2005-08-25 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written from an engineer's perspective of the mind. "Artificial Mind System" exposes the reader to a broad spectrum of interesting areas in general brain science and mind-oriented studies. In this research monograph a picture of the holistic model of an artificial mind system and its behaviour is drawn, as concretely as possible, within a unified context, which could eventually lead to practical realisation in terms of hardware or software. With a view that "the mind is a system always evolving", ideas inspired by many branches of studies related to brain science are integrated within the text, i.e. artificial intelligence, cognitive science / psychology, connectionism, consciousness studies, general neuroscience, linguistics, pattern recognition / data clustering, robotics, and signal processing.