Applied Computer Vision and Soft Computing with Interpretable AI

Download Applied Computer Vision and Soft Computing with Interpretable AI PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000952495
Total Pages : 333 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Applied Computer Vision and Soft Computing with Interpretable AI by : Swati V. Shinde

Download or read book Applied Computer Vision and Soft Computing with Interpretable AI written by Swati V. Shinde and published by CRC Press. This book was released on 2023-10-05 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text presents the knowledge base of computer vision and soft computing techniques with their applications for sustainable developments. Features: Covers a variety of deep learning architectures useful for computer vision tasks Demonstrates the use of different soft computing techniques and their applications for different computer vision tasks Highlights the unified strengths of hybrid techniques based on deep learning and soft computing taken together that give the interpretable, adaptive, and optimized solution to a given problem Addresses the different issues and further research opportunities in computer vision and soft computing Describes all the concepts with practical examples and case studies with appropriate performance measures that validate the applicability of the respective technique to a certain domain Considers recent real word problems and the prospective solutions to these problems This book will be useful to researchers, students, faculty, and industry personnel who are eager to explore the power of deep learning and soft computing for different computer vision tasks.

Artificial Intelligence

Download Artificial Intelligence PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3111344126
Total Pages : 442 pages
Book Rating : 4.1/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence by : Leonidas Deligiannidis

Download or read book Artificial Intelligence written by Leonidas Deligiannidis and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-08-05 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) revolves around creating and utilizing intelligent machines through science and engineering. This book delves into the theory and practical applications of computer science methods that incorporate AI across many domains. It covers techniques such as Machine Learning (ML), Convolutional Neural Networks (CNN), Deep Learning (DL), and Large Language Models (LLM) to tackle complex issues and overcome various challenges.

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing

Download Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030756572
Total Pages : 443 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing by : Sujata Dash

Download or read book Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing written by Sujata Dash and published by Springer Nature. This book was released on 2021-11-05 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.

Proceedings of the international conference on Machine Learning

Download Proceedings of the international conference on Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (632 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the international conference on Machine Learning by : John Anderson

Download or read book Proceedings of the international conference on Machine Learning written by John Anderson and published by . This book was released on 19?? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Pattern Recognition and Machine Learning

Download Pattern Recognition and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781493938438
Total Pages : 0 pages
Book Rating : 4.9/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop

Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Download Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030289540
Total Pages : 435 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by : Wojciech Samek

Download or read book Explainable AI: Interpreting, Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Download Explainable and Interpretable Models in Computer Vision and Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319981315
Total Pages : 305 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Explainable and Interpretable Models in Computer Vision and Machine Learning by : Hugo Jair Escalante

Download or read book Explainable and Interpretable Models in Computer Vision and Machine Learning written by Hugo Jair Escalante and published by Springer. This book was released on 2018-11-29 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

Encyclopedia of Artificial Intelligence

Download Encyclopedia of Artificial Intelligence PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1599048507
Total Pages : 1640 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Artificial Intelligence by : Juan Ramon Rabunal

Download or read book Encyclopedia of Artificial Intelligence written by Juan Ramon Rabunal and published by IGI Global. This book was released on 2009-01-01 with total page 1640 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, techniques, technologies, among others"--Provided by publisher.

Schaum's Outline of Computer Architecture

Download Schaum's Outline of Computer Architecture PDF Online Free

Author :
Publisher : McGraw Hill Professional
ISBN 13 : 0071399623
Total Pages : 316 pages
Book Rating : 4.0/5 (713 download)

DOWNLOAD NOW!


Book Synopsis Schaum's Outline of Computer Architecture by : Nick Carter

Download or read book Schaum's Outline of Computer Architecture written by Nick Carter and published by McGraw Hill Professional. This book was released on 2001-12-21 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A problem/solution manual, integrating general principles and laboratory exercises, that provides students with the hands-on experience needed to master the basics of modern computer system design Features more than 200 detailed problems, with step-by-step solutions; many detailed graphics and charts; chapter summaries with additional "rapid-review" questions; and expert sidebar tips Describes analytical methods for quantifying real-world design choices regarding instruction sets, pipelining, cache, memory, I/O, and other critical hardware and software elements involved in building computers An ideal educational resource for the more than 70,000 undergraduate and graduate students who, each year, enroll in computer architecture and related courses

Introduction to Machine Learning

Download Introduction to Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262028182
Total Pages : 639 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Machine Learning by : Ethem Alpaydin

Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Deep Learning Applications, Volume 2

Download Deep Learning Applications, Volume 2 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789811567582
Total Pages : 300 pages
Book Rating : 4.5/5 (675 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Applications, Volume 2 by : M. Arif Wani

Download or read book Deep Learning Applications, Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Download Handbook Of Pattern Recognition And Computer Vision (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814497649
Total Pages : 1045 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Handbook Of Pattern Recognition And Computer Vision (2nd Edition) by : Chi Hau Chen

Download or read book Handbook Of Pattern Recognition And Computer Vision (2nd Edition) written by Chi Hau Chen and published by World Scientific. This book was released on 1999-03-12 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Explainable AI in Healthcare and Medicine

Download Explainable AI in Healthcare and Medicine PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030533522
Total Pages : 344 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Explainable AI in Healthcare and Medicine by : Arash Shaban-Nejad

Download or read book Explainable AI in Healthcare and Medicine written by Arash Shaban-Nejad and published by Springer Nature. This book was released on 2020-11-02 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine. Featuring selected papers from the 2020 Health Intelligence Workshop, held as part of the Association for the Advancement of Artificial Intelligence (AAAI) Annual Conference, it offers an overview of the issues, challenges, and opportunities in the field, along with the latest research findings. Discussing a wide range of practical applications, it makes the emerging topics of digital health and explainable AI in health care and medicine accessible to a broad readership. The availability of explainable and interpretable models is a first step toward building a culture of transparency and accountability in health care. As such, this book provides information for scientists, researchers, students, industry professionals, public health agencies, and NGOs interested in the theory and practice of computational models of public and personalized health intelligence.

Interpretable Artificial Intelligence: A Perspective of Granular Computing

Download Interpretable Artificial Intelligence: A Perspective of Granular Computing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030649490
Total Pages : 430 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Artificial Intelligence: A Perspective of Granular Computing by : Witold Pedrycz

Download or read book Interpretable Artificial Intelligence: A Perspective of Granular Computing written by Witold Pedrycz and published by Springer Nature. This book was released on 2021-03-26 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.

Soft Computing and Intelligent Systems Design

Download Soft Computing and Intelligent Systems Design PDF Online Free

Author :
Publisher : Addison Wesley Longman
ISBN 13 :
Total Pages : 592 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Soft Computing and Intelligent Systems Design by : Fakhreddine O. Karray

Download or read book Soft Computing and Intelligent Systems Design written by Fakhreddine O. Karray and published by Addison Wesley Longman. This book was released on 2004 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.

Machine Learning in Computer Vision

Download Machine Learning in Computer Vision PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402032757
Total Pages : 253 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Computer Vision by : Nicu Sebe

Download or read book Machine Learning in Computer Vision written by Nicu Sebe and published by Springer Science & Business Media. This book was released on 2005-10-04 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.