Machine Learning in Bioinformatics

Download Machine Learning in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470397411
Total Pages : 476 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Bioinformatics by : Yanqing Zhang

Download or read book Machine Learning in Bioinformatics written by Yanqing Zhang and published by John Wiley & Sons. This book was released on 2009-02-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.

Data Analytics in Bioinformatics

Download Data Analytics in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111978560X
Total Pages : 433 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Advanced AI Techniques and Applications in Bioinformatics

Download Advanced AI Techniques and Applications in Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 100046301X
Total Pages : 220 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Advanced AI Techniques and Applications in Bioinformatics by : Loveleen Gaur

Download or read book Advanced AI Techniques and Applications in Bioinformatics written by Loveleen Gaur and published by CRC Press. This book was released on 2021-10-17 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers

OMICS

Download OMICS PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466562811
Total Pages : 721 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis OMICS by : Debmalya Barh

Download or read book OMICS written by Debmalya Barh and published by CRC Press. This book was released on 2013-03-26 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.

Bioinformatics

Download Bioinformatics PDF Online Free

Author :
Publisher : MIT Press (MA)
ISBN 13 : 9780262024426
Total Pages : 351 pages
Book Rating : 4.0/5 (244 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics by : Pierre Baldi

Download or read book Bioinformatics written by Pierre Baldi and published by MIT Press (MA). This book was released on 1998 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding more than ever. Biotechnology, pharmacology, and medicine will be particularly affected by the new results and the increased understanding of life at the molecular level. Bioinformatics is the development and application of computer methods for analysis, interpretation, and prediction, as well as for the design of experiments. It has emerged as a strategic frontier between biology and computer science. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory—and this is exactly the situation in molecular biology. As with its predecessor, statistical model fitting, the goal in machine learning is to extract useful information from a body of data by building good probabilistic models. The particular twist behind machine learning, however, is to automate the process as much as possible. In this book, Pierre Baldi and Soren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed at two types of researchers and students. First are the biologists and biochemists who need to understand new data-driven algorithms, such as neural networks and hidden Markov models, in the context of biological sequences and their molecular structure and function. Second are those with a primary background in physics, mathematics, statistics, or computer science who need to know more about specific applications in molecular biology.

Unsupervised Feature Extraction Applied to Bioinformatics

Download Unsupervised Feature Extraction Applied to Bioinformatics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030224562
Total Pages : 329 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Unsupervised Feature Extraction Applied to Bioinformatics by : Y-h. Taguchi

Download or read book Unsupervised Feature Extraction Applied to Bioinformatics written by Y-h. Taguchi and published by Springer Nature. This book was released on 2019-08-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Bioinformatics, second edition

Download Bioinformatics, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262025065
Total Pages : 492 pages
Book Rating : 4.0/5 (25 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics, second edition by : Pierre Baldi

Download or read book Bioinformatics, second edition written by Pierre Baldi and published by MIT Press. This book was released on 2001-07-20 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to machine learning approaches and their application to the analysis of biological data. An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models—and to automate the process as much as possible. In this book Pierre Baldi and Søren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology. This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.

Applications of Machine Learning

Download Applications of Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811533571
Total Pages : 404 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Applications of Machine Learning by : Prashant Johri

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Kernel-based Data Fusion for Machine Learning

Download Kernel-based Data Fusion for Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642194060
Total Pages : 223 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Kernel-based Data Fusion for Machine Learning by : Shi Yu

Download or read book Kernel-based Data Fusion for Machine Learning written by Shi Yu and published by Springer. This book was released on 2011-03-29 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Bioinformatics Applications Based On Machine Learning

Download Bioinformatics Applications Based On Machine Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9783036507613
Total Pages : 206 pages
Book Rating : 4.5/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics Applications Based On Machine Learning by : Pablo Chamoso

Download or read book Bioinformatics Applications Based On Machine Learning written by Pablo Chamoso and published by . This book was released on 2021 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The great advances in information technology (IT) have implications for many sectors, such as bioinformatics, and has considerably increased their possibilities. This book presents a collection of 11 original research papers, all of them related to the application of IT-related techniques within the bioinformatics sector: from new applications created from the adaptation and application of existing techniques to the creation of new methodologies to solve existing problems.

Biomedical Data Mining for Information Retrieval

Download Biomedical Data Mining for Information Retrieval PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111971124X
Total Pages : 450 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Biomedical Data Mining for Information Retrieval by : Sujata Dash

Download or read book Biomedical Data Mining for Information Retrieval written by Sujata Dash and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Classification and Learning Using Genetic Algorithms

Download Classification and Learning Using Genetic Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540496076
Total Pages : 320 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Classification and Learning Using Genetic Algorithms by : Sanghamitra Bandyopadhyay

Download or read book Classification and Learning Using Genetic Algorithms written by Sanghamitra Bandyopadhyay and published by Springer Science & Business Media. This book was released on 2007-05-17 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.

Machine Learning: Concepts, Methodologies, Tools and Applications

Download Machine Learning: Concepts, Methodologies, Tools and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1609608194
Total Pages : 2174 pages
Book Rating : 4.6/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning: Concepts, Methodologies, Tools and Applications by : Management Association, Information Resources

Download or read book Machine Learning: Concepts, Methodologies, Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2011-07-31 with total page 2174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Download Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000534057
Total Pages : 407 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics by : Sujata Dash

Download or read book Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics written by Sujata Dash and published by CRC Press. This book was released on 2022-02-10 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Kernel Methods in Computational Biology

Download Kernel Methods in Computational Biology PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262195096
Total Pages : 428 pages
Book Rating : 4.1/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Kernel Methods in Computational Biology by : Bernhard Schölkopf

Download or read book Kernel Methods in Computational Biology written by Bernhard Schölkopf and published by MIT Press. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed overview of current research in kernel methods and their application to computational biology.

Data Mining in Bioinformatics

Download Data Mining in Bioinformatics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781852336714
Total Pages : 356 pages
Book Rating : 4.3/5 (367 download)

DOWNLOAD NOW!


Book Synopsis Data Mining in Bioinformatics by : Jason T. L. Wang

Download or read book Data Mining in Bioinformatics written by Jason T. L. Wang and published by Springer Science & Business Media. This book was released on 2005 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.

Artificial Intelligence in Healthcare

Download Artificial Intelligence in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128184396
Total Pages : 385 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data