Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Application Of Multiobjective Optimization Concepts In Inverse Radiotherapy Planning
Download Application Of Multiobjective Optimization Concepts In Inverse Radiotherapy Planning full books in PDF, epub, and Kindle. Read online Application Of Multiobjective Optimization Concepts In Inverse Radiotherapy Planning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multiobjective Optimization by : Jürgen Branke
Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer Science & Business Media. This book was released on 2008-10-15 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Book Synopsis Multiobjective Optimization by : Jürgen Branke
Download or read book Multiobjective Optimization written by Jürgen Branke and published by Springer. This book was released on 2008-10-18 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiobjective optimization deals with solving problems having not only one, but multiple, often conflicting, criteria. Such problems can arise in practically every field of science, engineering and business, and the need for efficient and reliable solution methods is increasing. The task is challenging due to the fact that, instead of a single optimal solution, multiobjective optimization results in a number of solutions with different trade-offs among criteria, also known as Pareto optimal or efficient solutions. Hence, a decision maker is needed to provide additional preference information and to identify the most satisfactory solution. Depending on the paradigm used, such information may be introduced before, during, or after the optimization process. Clearly, research and application in multiobjective optimization involve expertise in optimization as well as in decision support. This state-of-the-art survey originates from the International Seminar on Practical Approaches to Multiobjective Optimization, held in Dagstuhl Castle, Germany, in December 2006, which brought together leading experts from various contemporary multiobjective optimization fields, including evolutionary multiobjective optimization (EMO), multiple criteria decision making (MCDM) and multiple criteria decision aiding (MCDA). This book gives a unique and detailed account of the current status of research and applications in the field of multiobjective optimization. It contains 16 chapters grouped in the following 5 thematic sections: Basics on Multiobjective Optimization; Recent Interactive and Preference-Based Approaches; Visualization of Solutions; Modelling, Implementation and Applications; and Quality Assessment, Learning, and Future Challenges.
Book Synopsis Image-Guided IMRT by : Thomas Bortfeld
Download or read book Image-Guided IMRT written by Thomas Bortfeld and published by Springer Science & Business Media. This book was released on 2006-05-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intensity-modulated radiation therapy (IMRT), one of the most important developments in radiation oncology in the past 25 years, involves technology to deliver radiation to tumors in the right location, quantity and time. Unavoidable irradiation of surrounding normal tissues is distributed so as to preserve their function. The achievements and future directions in the field are grouped in the three sections of the book, each suitable for supporting a teaching course. Part 1 contains topical reviews of the basic principles of IMRT, part 2 describes advanced techniques such as image-guided and biologically based approaches, and part 3 focuses on investigation of IMRT to improve outcome at various cancer sites.
Book Synopsis Handbook of Optimization in Medicine by : Panos M. Pardalos
Download or read book Handbook of Optimization in Medicine written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Optimization in Medicine is devoted to examining the dramatic increase in the application of effective optimization techniques to the delivery of health care. The articles, written by experts, focus on models and algorithms that have led to more efficient and sophisticated treatments of patients. Topics covered include: optimization in medical imaging, classification and data mining with medical applications, treatment of epilepsy and other brain disorders, treatment of head-and-neck, prostate, and other cancers using conventional conformal and intensity-modulated radiation therapy as well as proton therapy, treatment selection for breast cancer based on new classification schemes, optimization for the genome project, optimal timing of organ transplants.
Book Synopsis Machine Learning, Optimization, and Big Data by : Giuseppe Nicosia
Download or read book Machine Learning, Optimization, and Big Data written by Giuseppe Nicosia and published by Springer. This book was released on 2017-12-19 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.
Book Synopsis Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization by : Björn Morén
Download or read book Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.
Book Synopsis Currents in Industrial Mathematics by : Helmut Neunzert
Download or read book Currents in Industrial Mathematics written by Helmut Neunzert and published by Springer. This book was released on 2015-11-01 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an insider's view of how industrial problems are translated into mathematics and how solving the mathematics leads to convincing industrial solutions as well. In 6 technical chapters, a wide range of industrial problems is modeled, simulated, and optimized; 4 others describe the modeling, computing, optimization, and data analysis concepts shaping the work of the Fraunhofer ITWM. Each technical chapter illustrates how the relevant mathematics has been adapted or extended for the specific application and details the underlying practical problem and resulting software. The final chapter shows how the use of mathematical modeling in the classroom can change the image of this subject, making it exciting and fun.
Book Synopsis Applications of Multi-objective Evolutionary Algorithms by : Carlos A. Coello Coello
Download or read book Applications of Multi-objective Evolutionary Algorithms written by Carlos A. Coello Coello and published by World Scientific. This book was released on 2004 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Book Synopsis Artificial Intelligence in Radiation Oncology and Biomedical Physics by : Gilmer Valdes
Download or read book Artificial Intelligence in Radiation Oncology and Biomedical Physics written by Gilmer Valdes and published by CRC Press. This book was released on 2023-08-14 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering book explores how machine learning and other AI techniques impact millions of cancer patients who benefit from ionizing radiation. It features contributions from global researchers and clinicians, focusing on the clinical applications of machine learning for medical physics. AI and machine learning have attracted much recent attention and are being increasingly adopted in medicine, with many clinical components and commercial software including aspects of machine learning integration. General principles and important techniques in machine learning are introduced, followed by discussion of clinical applications, particularly in radiomics, outcome prediction, registration and segmentation, treatment planning, quality assurance, image processing, and clinical decision-making. Finally, a futuristic look at the role of AI in radiation oncology is provided. This book brings medical physicists and radiation oncologists up to date with the most novel applications of machine learning to medical physics. Practitioners will appreciate the insightful discussions and detailed descriptions in each chapter. Its emphasis on clinical applications reaches a wide audience within the medical physics profession.
Book Synopsis The Use of Computers in Radiation Therapy by : Wolfgang Schlegel
Download or read book The Use of Computers in Radiation Therapy written by Wolfgang Schlegel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computers have had and will continue to have a tremendous impact on professional activity in almost all areas. This applies to radiological medicine and in particular to radiation therapy. This book compiles the most recent developments and results of the application of computers and computer science as presented at the XIIIth International Conference on the Use of Computers in Radiation Therapy in Heidelberg, Germany. The text of both oral presentations and posters is included. The book is intended for computer sientists, medical physicists, engineers and physicians in the field of radiation therapy and provides a comprehensive survey of the entire field.
Book Synopsis The Journal of Fuzzy Mathematics by :
Download or read book The Journal of Fuzzy Mathematics written by and published by . This book was released on 2006 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Proton Therapy Physics, Second Edition by : Harald Paganetti
Download or read book Proton Therapy Physics, Second Edition written by Harald Paganetti and published by CRC Press. This book was released on 2018-11-19 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expanding on the highly successful first edition, this second edition of Proton Therapy Physics has been completely restructured and updated throughout, and includes several new chapters. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, this book provides an in-depth overview of the physics of this radiation therapy modality, eliminating the need to dig through information scattered across medical physics literature. After tracing the history of proton therapy, the book explores the atomic and nuclear physics background necessary for understanding proton interactions with tissue. The text then covers dosimetry, including beam delivery, shielding aspects, computer simulations, detector systems and measuring techniques for reference dosimetry. Important for daily operations, acceptance testing, commissioning, quality assurance and monitor unit calibrations are outlined. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. Imaging for treatment guidance as well as treatment monitoring is outlined. Finally, the biological implications of using protons from a physics perspective are discussed. This book is an ideal practical guide for physicians, dosimetrists, radiation therapists, and physicists who already have some experience in radiation oncology. It is also an invaluable reference for graduate students in medical physics programs, physicians in their last year of medical school or residency, and those considering a career in medical physics. Features: Updated with the latest technologies and methods in the field, covering all delivery methods of proton therapy, including beam scanning and passive scattering Discusses clinical aspects, such as treatment planning and quality assurance Offers insight on the past, present, and future of proton therapy from a physics perspective
Book Synopsis Mathematics Without Boundaries by : Panos M. Pardalos
Download or read book Mathematics Without Boundaries written by Panos M. Pardalos and published by Springer. This book was released on 2014-09-16 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of chapters written by eminent scientists and engineers from the international community and present significant advances in several theories, methods and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, Discrete Mathematics and Geometry, as well as several applications to a large variety of concrete problems, including applications of computers to the study of smoothness and analyticity of functions, applications to epidemiological diffusion, networks, mathematical models of elastic and piezoelectric fields, optimal algorithms, stability of neutral type vector functional differential equations, sampling and rational interpolation for non-band-limited signals, recurrent neural network for convex optimization problems and experimental design. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical and Engineering subjects and especially to graduate students who search for the latest information.
Book Synopsis Intensity-Modulated Radiation Therapy by : S. Webb
Download or read book Intensity-Modulated Radiation Therapy written by S. Webb and published by CRC Press. This book was released on 2015-05-06 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de
Book Synopsis Radiation Therapy Physics by : Alfred R. Smith
Download or read book Radiation Therapy Physics written by Alfred R. Smith and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.
Book Synopsis Gunderson & Tepper's Clinical Radiation Oncology, E-Book by : Joel E. Tepper
Download or read book Gunderson & Tepper's Clinical Radiation Oncology, E-Book written by Joel E. Tepper and published by Elsevier Health Sciences. This book was released on 2019-12-06 with total page 2356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, multidisciplinary resource for the entire radiation oncology team, Gunderson & Tepper's Clinical Radiation Oncology, 5th Edition, thoroughly covers all aspects of this complex and dynamic field. Concise, templated chapters cover the basic biology of oncologic disease processes as well as updated treatment algorithms, the latest clinical guidelines, and state-of-the-art techniques and modalities. More than 1,000 images—detailed anatomy drawings, radiographic images, and more—provide outstanding visual support for every area of the text. - Divides content into three distinct sections for quick access to information: Scientific Foundations, Techniques and Modalities, and Disease Sites. Disease Site chapters include overviews summarizing the most important issues and concluding discussions on controversies and problems. - Features new and expanded content on molecular and cellular biology and its relevance in individualized treatment approaches, stereotactic radiation therapy, radiosurgery, proton therapy, biologic therapy, precision radiation therapy, targeted radiation, dosing guidelines for better quality of life and improved patient outcomes, and more. - Includes new chapters on Radiation Physics: Particle Therapy, Interventional Radiology, Radiation Therapy in the Elderly, Palliative Care, Quality and Safety, and Immunotherapy with Radiotherapy. - Provides guidance on single-modality and combined-modality approaches, as well as outcome data including disease control, survival, and treatment tolerance. - Includes access to videos on Intraoperative Irradiation, Prostate Brachytherapy, Penile Brachytherapy, and Ocular Melanoma. - Expert ConsultTM eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.
Book Synopsis Machine Learning in Radiation Oncology by : Issam El Naqa
Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.