Quasilinear Elliptic Equations with Degenerations and Singularities

Download Quasilinear Elliptic Equations with Degenerations and Singularities PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110804778
Total Pages : 233 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Quasilinear Elliptic Equations with Degenerations and Singularities by : Pavel Drábek

Download or read book Quasilinear Elliptic Equations with Degenerations and Singularities written by Pavel Drábek and published by Walter de Gruyter. This book was released on 2011-07-22 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Nonlinear Second Order Elliptic Equations Involving Measures

Download Nonlinear Second Order Elliptic Equations Involving Measures PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110305313
Total Pages : 264 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Second Order Elliptic Equations Involving Measures by : Moshe Marcus

Download or read book Nonlinear Second Order Elliptic Equations Involving Measures written by Moshe Marcus and published by Walter de Gruyter. This book was released on 2013-11-27 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.

Lebesgue and Sobolev Spaces with Variable Exponents

Download Lebesgue and Sobolev Spaces with Variable Exponents PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642183638
Total Pages : 516 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening

Download or read book Lebesgue and Sobolev Spaces with Variable Exponents written by Lars Diening and published by Springer. This book was released on 2011-03-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.

Elliptic Boundary Value Problems in Domains with Point Singularities

Download Elliptic Boundary Value Problems in Domains with Point Singularities PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821807544
Total Pages : 426 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems in Domains with Point Singularities by : Vladimir Kozlov

Download or read book Elliptic Boundary Value Problems in Domains with Point Singularities written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 1997 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Elliptic Problems in Nonsmooth Domains

Download Elliptic Problems in Nonsmooth Domains PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972027
Total Pages : 426 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Problems in Nonsmooth Domains by : Pierre Grisvard

Download or read book Elliptic Problems in Nonsmooth Domains written by Pierre Grisvard and published by SIAM. This book was released on 2011-10-20 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: Boston: Pitman Advanced Pub. Program, 1985.

A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials

Download A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821890220
Total Pages : 97 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials by : Florica C. Cîrstea

Download or read book A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials written by Florica C. Cîrstea and published by American Mathematical Soc.. This book was released on 2014-01-08 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: In particular, for b = 1 and λ = 0, we find a sharp condition on h such that the origin is a removable singularity for all non-negative solutions of [[eqref]]one, thus addressing an open question of Vázquez and Véron.

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Download Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821827278
Total Pages : 449 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations by : Vladimir Kozlov

Download or read book Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 2001 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.

Elliptic Partial Differential Equations

Download Elliptic Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821853139
Total Pages : 161 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Partial Differential Equations by : Qing Han

Download or read book Elliptic Partial Differential Equations written by Qing Han and published by American Mathematical Soc.. This book was released on 2011 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Pseudo-Differential Operators on Manifolds with Singularities

Download Pseudo-Differential Operators on Manifolds with Singularities PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080875459
Total Pages : 417 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Pseudo-Differential Operators on Manifolds with Singularities by : B.-W. Schulze

Download or read book Pseudo-Differential Operators on Manifolds with Singularities written by B.-W. Schulze and published by Elsevier. This book was released on 1991-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of differential equations in domains and on manifolds with singularities belongs to the main streams of recent developments in applied and pure mathematics. The applications and concrete models from engineering and physics are often classical but the modern structure calculus was only possible since the achievements of pseudo-differential operators. This led to deep connections with index theory, topology and mathematical physics.The present book is devoted to elliptic partial differential equations in the framework of pseudo-differential operators. The first chapter contains the Mellin pseudo-differential calculus on R+ and the functional analysis of weighted Sobolev spaces with discrete and continuous asymptotics. Chapter 2 is devoted to the analogous theory on manifolds with conical singularities, Chapter 3 to manifolds with edges. Employed are pseudo-differential operators along edges with cone-operator-valued symbols.

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Download Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691137773
Total Pages : 708 pages
Book Rating : 4.1/5 (377 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) by : Kari Astala

Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Global Solution Curves for Semilinear Elliptic Equations

Download Global Solution Curves for Semilinear Elliptic Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814374350
Total Pages : 254 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Global Solution Curves for Semilinear Elliptic Equations by : Philip Korman

Download or read book Global Solution Curves for Semilinear Elliptic Equations written by Philip Korman and published by World Scientific. This book was released on 2012 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results.

Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation

Download Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146141508X
Total Pages : 473 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation by : Zohar Yosibash

Download or read book Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation written by Zohar Yosibash and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.

Singular Solutions of Nonlinear Elliptic and Parabolic Equations

Download Singular Solutions of Nonlinear Elliptic and Parabolic Equations PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110332248
Total Pages : 448 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Singular Solutions of Nonlinear Elliptic and Parabolic Equations by : Alexander A. Kovalevsky

Download or read book Singular Solutions of Nonlinear Elliptic and Parabolic Equations written by Alexander A. Kovalevsky and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-03-21 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph looks at several trends in the investigation of singular solutions of nonlinear elliptic and parabolic equations. It discusses results on the existence and properties of weak and entropy solutions for elliptic second-order equations and some classes of fourth-order equations with L1-data and questions on the removability of singularities of solutions to elliptic and parabolic second-order equations in divergence form. It looks at localized and nonlocalized singularly peaking boundary regimes for different classes of quasilinear parabolic second- and high-order equations in divergence form. The book will be useful for researchers and post-graduate students that specialize in the field of the theory of partial differential equations and nonlinear analysis. Contents: Foreword Part I: Nonlinear elliptic equations with L^1-data Nonlinear elliptic equations of the second order with L^1-data Nonlinear equations of the fourth order with strengthened coercivity and L^1-data Part II: Removability of singularities of the solutions of quasilinear elliptic and parabolic equations of the second order Removability of singularities of the solutions of quasilinear elliptic equations Removability of singularities of the solutions of quasilinear parabolic equations Quasilinear elliptic equations with coefficients from the Kato class Part III: Boundary regimes with peaking for quasilinear parabolic equations Energy methods for the investigation of localized regimes with peaking for parabolic second-order equations Method of functional inequalities in peaking regimes for parabolic equations of higher orders Nonlocalized regimes with singular peaking Appendix: Formulations and proofs of the auxiliary results Bibliography

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Download Minimax Methods in Critical Point Theory with Applications to Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821807153
Total Pages : 110 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Minimax Methods in Critical Point Theory with Applications to Differential Equations by : Paul H. Rabinowitz

Download or read book Minimax Methods in Critical Point Theory with Applications to Differential Equations written by Paul H. Rabinowitz and published by American Mathematical Soc.. This book was released on 1986-07-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.

Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities

Download Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461333385
Total Pages : 488 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities by : Zi Cai Li

Download or read book Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities written by Zi Cai Li and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.

Parabolicity, Volterra Calculus, and Conical Singularities

Download Parabolicity, Volterra Calculus, and Conical Singularities PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034881916
Total Pages : 367 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Parabolicity, Volterra Calculus, and Conical Singularities by : Sergio Albeverio

Download or read book Parabolicity, Volterra Calculus, and Conical Singularities written by Sergio Albeverio and published by Birkhäuser. This book was released on 2012-12-06 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations constitute an integral part of mathematics. They lie at the interface of areas as diverse as differential geometry, functional analysis, or the theory of Lie groups and have numerous applications in the applied sciences. A wealth of methods has been devised for their analysis. Over the past decades, operator algebras in connection with ideas and structures from geometry, topology, and theoretical physics have contributed a large variety of particularly useful tools. One typical example is the analysis on singular configurations, where elliptic equations have been studied successfully within the framework of operator algebras with symbolic structures adapted to the geometry of the underlying space. More recently, these techniques have proven to be useful also for studying parabolic and hyperbolic equations. Moreover, it turned out that many seemingly smooth, noncompact situations can be handled with the ideas from singular analysis. The three papers at the beginning of this volume highlight this aspect. They deal with parabolic equations, a topic relevant for many applications. The first article prepares the ground by presenting a calculus for pseudo differential operators with an anisotropic analytic parameter. In the subsequent paper, an algebra of Mellin operators on the infinite space-time cylinder is constructed. It is shown how timelike infinity can be treated as a conical singularity.

Elliptic Theory on Singular Manifolds

Download Elliptic Theory on Singular Manifolds PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420034979
Total Pages : 372 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Theory on Singular Manifolds by : Vladimir E. Nazaikinskii

Download or read book Elliptic Theory on Singular Manifolds written by Vladimir E. Nazaikinskii and published by CRC Press. This book was released on 2005-08-12 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis and topology of elliptic operators on manifolds with singularities are much more complicated than in the smooth case and require completely new mathematical notions and theories. While there has recently been much progress in the field, many of these results have remained scattered in journals and preprints. Starting from an ele