Computational Genomics with R

Download Computational Genomics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498781861
Total Pages : 463 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Genomics with R by : Altuna Akalin

Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Optimal High-Throughput Screening

Download Optimal High-Throughput Screening PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139498371
Total Pages : 223 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Optimal High-Throughput Screening by : Xiaohua Douglas Zhang

Download or read book Optimal High-Throughput Screening written by Xiaohua Douglas Zhang and published by Cambridge University Press. This book was released on 2011-02-21 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, self-contained and cohesive book focuses on commonly used and recently developed methods for designing and analyzing high-throughput screening (HTS) experiments from a statistically sound basis. Combining ideas from biology, computing and statistics, the author explains experimental designs and analytic methods that are amenable to rigorous analysis and interpretation of RNAi HTS experiments. The opening chapters are carefully presented to be accessible both to biologists with training only in basic statistics and to computational scientists and statisticians with basic biological knowledge. Biologists will see how new experiment designs and rudimentary data-handling strategies for RNAi HTS experiments can improve their results, whereas analysts will learn how to apply recently developed statistical methods to interpret HTS experiments.

Next Steps for Functional Genomics

Download Next Steps for Functional Genomics PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309676738
Total Pages : 201 pages
Book Rating : 4.3/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Next Steps for Functional Genomics by : National Academies of Sciences, Engineering, and Medicine

Download or read book Next Steps for Functional Genomics written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-12-18 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the holy grails in biology is the ability to predict functional characteristics from an organism's genetic sequence. Despite decades of research since the first sequencing of an organism in 1995, scientists still do not understand exactly how the information in genes is converted into an organism's phenotype, its physical characteristics. Functional genomics attempts to make use of the vast wealth of data from "-omics" screens and projects to describe gene and protein functions and interactions. A February 2020 workshop was held to determine research needs to advance the field of functional genomics over the next 10-20 years. Speakers and participants discussed goals, strategies, and technical needs to allow functional genomics to contribute to the advancement of basic knowledge and its applications that would benefit society. This publication summarizes the presentations and discussions from the workshop.

Evolution of Translational Omics

Download Evolution of Translational Omics PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309224187
Total Pages : 354 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Evolution of Translational Omics by : Institute of Medicine

Download or read book Evolution of Translational Omics written by Institute of Medicine and published by National Academies Press. This book was released on 2012-09-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Metagenomics

Download Metagenomics PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1838800557
Total Pages : 164 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Metagenomics by : Wael N. Hozzein

Download or read book Metagenomics written by Wael N. Hozzein and published by BoD – Books on Demand. This book was released on 2020-03-25 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for the students starting their research projects in the field of metagenomics, for researchers interested in the new developments and applications in this field; and for teachers involved in teaching this subject. The book is divided into three sections as indicated from its title, namely; the basics of metagenomics, metagenomic analysis, and applications of metagenomics. It covers the basics of metagenomics from its history and background, to the analysis of metagenomic data as well as its recent applications in different fields. The book contains excellent texts at both the introductory and advanced levels, that describe the latest metagenomic approaches and applications, from sampling to data analysis for taxonomic, environmental, and medical studies. Finally, the publication of this book was an interesting journey for me and I hope the readers will enjoy reading it.

Ancient DNA

Download Ancient DNA PDF Online Free

Author :
Publisher :
ISBN 13 : 9781617795169
Total Pages : 247 pages
Book Rating : 4.7/5 (951 download)

DOWNLOAD NOW!


Book Synopsis Ancient DNA by : Beth Alison Shapiro

Download or read book Ancient DNA written by Beth Alison Shapiro and published by . This book was released on 2012-01-01 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ancient DNA presents an overview of the many of the protocols commonly used to study ancient DNA. These include laboratory instructions, extraction protocols, laboratory techniques, and suggestions for appropriate analytical approaches to make sense of the sequences obtained.

Primer to Analysis of Genomic Data Using R

Download Primer to Analysis of Genomic Data Using R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319144758
Total Pages : 283 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Primer to Analysis of Genomic Data Using R by : Cedric Gondro

Download or read book Primer to Analysis of Genomic Data Using R written by Cedric Gondro and published by Springer. This book was released on 2015-05-18 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.

Biological Sequence Analysis

Download Biological Sequence Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113945739X
Total Pages : 372 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Biological Sequence Analysis by : Richard Durbin

Download or read book Biological Sequence Analysis written by Richard Durbin and published by Cambridge University Press. This book was released on 1998-04-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Topological Data Analysis for Genomics and Evolution

Download Topological Data Analysis for Genomics and Evolution PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108753396
Total Pages : 521 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Topological Data Analysis for Genomics and Evolution by : Raúl Rabadán

Download or read book Topological Data Analysis for Genomics and Evolution written by Raúl Rabadán and published by Cambridge University Press. This book was released on 2019-10-31 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biology has entered the age of Big Data. The technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce questions to a comparison of algebraic invariants, such as numbers, which are typically easier to solve. Topological data analysis is a rapidly-developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology alongside mathematicians interested in applied topology.

Weighted Network Analysis

Download Weighted Network Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144198819X
Total Pages : 433 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Weighted Network Analysis by : Steve Horvath

Download or read book Weighted Network Analysis written by Steve Horvath and published by Springer Science & Business Media. This book was released on 2011-04-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-throughput measurements of gene expression and genetic marker data facilitate systems biologic and systems genetic data analysis strategies. Gene co-expression networks have been used to study a variety of biological systems, bridging the gap from individual genes to biologically or clinically important emergent phenotypes.

Fundamentals of Data Mining in Genomics and Proteomics

Download Fundamentals of Data Mining in Genomics and Proteomics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387475095
Total Pages : 300 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Data Mining in Genomics and Proteomics by : Werner Dubitzky

Download or read book Fundamentals of Data Mining in Genomics and Proteomics written by Werner Dubitzky and published by Springer Science & Business Media. This book was released on 2007-04-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art analytical methods from statistics and data mining for the analysis of high-throughput data from genomics and proteomics. It adopts an approach focusing on concepts and applications and presents key analytical techniques for the analysis of genomics and proteomics data by detailing their underlying principles, merits and limitations.

Next-Generation Sequencing Data Analysis

Download Next-Generation Sequencing Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482217899
Total Pages : 252 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Next-Generation Sequencing Data Analysis by : Xinkun Wang

Download or read book Next-Generation Sequencing Data Analysis written by Xinkun Wang and published by CRC Press. This book was released on 2016-04-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Download Bioinformatics and Computational Biology Solutions Using R and Bioconductor PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387293620
Total Pages : 478 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics and Computational Biology Solutions Using R and Bioconductor by : Robert Gentleman

Download or read book Bioinformatics and Computational Biology Solutions Using R and Bioconductor written by Robert Gentleman and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

Evaluating Human Genetic Diversity

Download Evaluating Human Genetic Diversity PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309184746
Total Pages : 101 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Evaluating Human Genetic Diversity by : National Research Council

Download or read book Evaluating Human Genetic Diversity written by National Research Council and published by National Academies Press. This book was released on 1998-01-19 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assesses the scientific value and merit of research on human genetic differencesâ€"including a collection of DNA samples that represents the whole of human genetic diversityâ€"and the ethical, organizational, and policy issues surrounding such research. Evaluating Human Genetic Diversity discusses the potential uses of such collection, such as providing insight into human evolution and origins and serving as a springboard for important medical research. It also addresses issues of confidentiality and individual privacy for participants in genetic diversity research studies.

Next Generation Sequencing

Download Next Generation Sequencing PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535122401
Total Pages : 466 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Next Generation Sequencing by : Jerzy Kulski

Download or read book Next Generation Sequencing written by Jerzy Kulski and published by BoD – Books on Demand. This book was released on 2016-01-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.

Genome Data Analysis

Download Genome Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811319421
Total Pages : 367 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Genome Data Analysis by : Ju Han Kim

Download or read book Genome Data Analysis written by Ju Han Kim and published by Springer. This book was released on 2019-04-30 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. The textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics.

Analysis of Biological Data

Download Analysis of Biological Data PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812708898
Total Pages : 353 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Biological Data by : Sanghamitra Bandyopadhyay

Download or read book Analysis of Biological Data written by Sanghamitra Bandyopadhyay and published by World Scientific. This book was released on 2007 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries.