Analysis of Hamiltonian PDEs

Download Analysis of Hamiltonian PDEs PDF Online Free

Author :
Publisher : Clarendon Press
ISBN 13 : 9780198503958
Total Pages : 228 pages
Book Rating : 4.5/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Hamiltonian PDEs by : Sergej B. Kuksin

Download or read book Analysis of Hamiltonian PDEs written by Sergej B. Kuksin and published by Clarendon Press. This book was released on 2000 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.

Nonlinear Oscillations of Hamiltonian PDEs

Download Nonlinear Oscillations of Hamiltonian PDEs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817646809
Total Pages : 191 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Oscillations of Hamiltonian PDEs by : Massimiliano Berti

Download or read book Nonlinear Oscillations of Hamiltonian PDEs written by Massimiliano Berti and published by Springer Science & Business Media. This book was released on 2007-10-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.

Hamiltonian Dynamical Systems and Applications

Download Hamiltonian Dynamical Systems and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402069642
Total Pages : 450 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Dynamical Systems and Applications by : Walter Craig

Download or read book Hamiltonian Dynamical Systems and Applications written by Walter Craig and published by Springer Science & Business Media. This book was released on 2008-02-17 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.

Hamiltonian Partial Differential Equations and Applications

Download Hamiltonian Partial Differential Equations and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 149392950X
Total Pages : 453 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Partial Differential Equations and Applications by : Philippe Guyenne

Download or read book Hamiltonian Partial Differential Equations and Applications written by Philippe Guyenne and published by Springer. This book was released on 2015-09-11 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Partial Differential Equations and Functional Analysis

Download Partial Differential Equations and Functional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764376015
Total Pages : 294 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Functional Analysis by : Erik Koelink

Download or read book Partial Differential Equations and Functional Analysis written by Erik Koelink and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Capturing the state of the art of the interplay between partial differential equations, functional analysis, maximal regularity, and probability theory, this volume was initiated at the Delft conference on the occasion of the retirement of Philippe Clément. It will be of interest to researchers in PDEs and functional analysis.

Hamiltonian Dynamics Theory and Applications

Download Hamiltonian Dynamics Theory and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540240648
Total Pages : 196 pages
Book Rating : 4.2/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Dynamics Theory and Applications by : CIME-EMS Summer School (

Download or read book Hamiltonian Dynamics Theory and Applications written by CIME-EMS Summer School ( and published by Springer Science & Business Media. This book was released on 2005 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Partial Differential Equations and Functional Analysis

Download Partial Differential Equations and Functional Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303133681X
Total Pages : 334 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Functional Analysis by : Andrew Comech

Download or read book Partial Differential Equations and Functional Analysis written by Andrew Comech and published by Springer Nature. This book was released on 2023-11-15 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at the Department of Mechanics and Mathematics at Moscow State University. The reader is introduced to a number of remarkable scientists whose lives intersected with Vishik’s, including S. Banach, J. Schauder, I. N. Vekua, N. I. Muskhelishvili, L. A. Lyusternik, I. G. Petrovskii, S. L. Sobolev, I. M. Gelfand, M. G. Krein, A. N. Kolmogorov, N. I. Akhiezer, J. Leray, J.-L. Lions, L. Schwartz, L. Nirenberg, and many others. The book also provides a detailed description of the main research directions of Mark Vishik written by his students and colleagues, as well as several reviews of the recent development in these directions.

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations

Download Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197304X
Total Pages : 331 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations by : Maurizio Falcone

Download or read book Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations written by Maurizio Falcone and published by SIAM. This book was released on 2014-01-31 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.

Variational Methods

Download Variational Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662032120
Total Pages : 288 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods by : Michael Struwe

Download or read book Variational Methods written by Michael Struwe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.

Attractors of Hamiltonian Nonlinear Partial Differential Equations

Download Attractors of Hamiltonian Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 100903605X
Total Pages : pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Attractors of Hamiltonian Nonlinear Partial Differential Equations by : Alexander Komech

Download or read book Attractors of Hamiltonian Nonlinear Partial Differential Equations written by Alexander Komech and published by Cambridge University Press. This book was released on 2021-09-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research.

Port-Hamiltonian Systems Theory

Download Port-Hamiltonian Systems Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601987860
Total Pages : 230 pages
Book Rating : 4.9/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Port-Hamiltonian Systems Theory by : Schaft Van Der

Download or read book Port-Hamiltonian Systems Theory written by Schaft Van Der and published by . This book was released on 2014-06-13 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Port-Hamiltonian Systems Theory: An Introductory Overview provides a concise and easily accessible description of the foundations underpinning the subject and emphasizes novel developments in the field, which will be of interest to a broad range of researchers.

Simulating Hamiltonian Dynamics

Download Simulating Hamiltonian Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521772907
Total Pages : 464 pages
Book Rating : 4.7/5 (729 download)

DOWNLOAD NOW!


Book Synopsis Simulating Hamiltonian Dynamics by : Benedict Leimkuhler

Download or read book Simulating Hamiltonian Dynamics written by Benedict Leimkuhler and published by Cambridge University Press. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.

Hamiltonian Dynamics - Theory and Applications

Download Hamiltonian Dynamics - Theory and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540315411
Total Pages : 187 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Hamiltonian Dynamics - Theory and Applications by : Giancarlo Benettin

Download or read book Hamiltonian Dynamics - Theory and Applications written by Giancarlo Benettin and published by Springer. This book was released on 2005-01-14 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume compiles three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants, and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.

Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs

Download Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470450445
Total Pages : 136 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs by : Zhiwu Lin

Download or read book Instability, Index Theorem, and Exponential Trichotomy for Linear Hamiltonian PDEs written by Zhiwu Lin and published by American Mathematical Society. This book was released on 2022-02-02 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Quantum Mechanics for Mathematicians

Download Quantum Mechanics for Mathematicians PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821846302
Total Pages : 410 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Quantum Mechanics for Mathematicians by : Leon Armenovich Takhtadzhi͡an

Download or read book Quantum Mechanics for Mathematicians written by Leon Armenovich Takhtadzhi͡an and published by American Mathematical Soc.. This book was released on 2008 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Solving PDEs in Python

Download Solving PDEs in Python PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319524623
Total Pages : 152 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Solving PDEs in Python by : Hans Petter Langtangen

Download or read book Solving PDEs in Python written by Hans Petter Langtangen and published by Springer. This book was released on 2017-03-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.