Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Analysis And Partial Differential Equations
Download Analysis And Partial Differential Equations full books in PDF, epub, and Kindle. Read online Analysis And Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Cohomological Analysis of Partial Differential Equations and Secondary Calculus by : A. M. Vinogradov
Download or read book Cohomological Analysis of Partial Differential Equations and Secondary Calculus written by A. M. Vinogradov and published by American Mathematical Soc.. This book was released on 2001-10-16 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".
Book Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui
Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
Book Synopsis Traveling Wave Analysis of Partial Differential Equations by : Graham Griffiths
Download or read book Traveling Wave Analysis of Partial Differential Equations written by Graham Griffiths and published by Academic Press. This book was released on 2010-12-09 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Book Synopsis An Introduction to Partial Differential Equations by : Michael Renardy
Download or read book An Introduction to Partial Differential Equations written by Michael Renardy and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.
Book Synopsis Applied functional Analysis and Partial Differential Equations by : Milan Miklavčič
Download or read book Applied functional Analysis and Partial Differential Equations written by Milan Miklavčič and published by Allied Publishers. This book was released on 1998 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fourier Analysis and Nonlinear Partial Differential Equations by : Hajer Bahouri
Download or read book Fourier Analysis and Nonlinear Partial Differential Equations written by Hajer Bahouri and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Book Synopsis Applications of Functional Analysis and Operator Theory by : Hutson
Download or read book Applications of Functional Analysis and Operator Theory written by Hutson and published by Academic Press. This book was released on 1980-02-01 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Functional Analysis and Operator Theory
Book Synopsis Partial Differential Equations: Modeling, Analysis and Numerical Approximation by : Hervé Le Dret
Download or read book Partial Differential Equations: Modeling, Analysis and Numerical Approximation written by Hervé Le Dret and published by Birkhäuser. This book was released on 2016-02-11 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.
Book Synopsis Partial Differential Equations by : Mark S. Gockenbach
Download or read book Partial Differential Equations written by Mark S. Gockenbach and published by SIAM. This book was released on 2010-12-02 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Analysis and Numerics of Partial Differential Equations by : Franco Brezzi
Download or read book Analysis and Numerics of Partial Differential Equations written by Franco Brezzi and published by Springer Science & Business Media. This book was released on 2012-12-22 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Book Synopsis Fourier Analysis and Partial Differential Equations by : Iorio Júnior Iorio Jr.
Download or read book Fourier Analysis and Partial Differential Equations written by Iorio Júnior Iorio Jr. and published by Cambridge University Press. This book was released on 2001-03-15 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was first published in 2001. It provides an introduction to Fourier analysis and partial differential equations and is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations. The first part of the book consists of some very classical material, followed by a discussion of the theory of periodic distributions and the periodic Sobolev spaces. The authors then turn to the study of linear and nonlinear equations in the setting provided by periodic distributions. They assume only some familiarity with Banach and Hilbert spaces and the elementary properties of bounded linear operators. After presenting a fairly complete discussion of local and global well-posedness for the nonlinear Schrödinger and the Korteweg-de Vries equations, they turn their attention, in the two final chapters, to the non-periodic setting, concentrating on problems that do not occur in the periodic case.
Book Synopsis Analytic Methods for Partial Differential Equations by : G. Evans
Download or read book Analytic Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.
Book Synopsis Partial Differential Equations by : R. M. M. Mattheij
Download or read book Partial Differential Equations written by R. M. M. Mattheij and published by SIAM. This book was released on 2005-01-01 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook with a unique approach that integrates analysis and numerical methods and includes modelling to address real-life problems.
Book Synopsis Tools and Problems in Partial Differential Equations by : Thomas Alazard
Download or read book Tools and Problems in Partial Differential Equations written by Thomas Alazard and published by Springer Nature. This book was released on 2020-10-19 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.