Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
An R And S Plusr Companion To Multivariate Analysis
Download An R And S Plusr Companion To Multivariate Analysis full books in PDF, epub, and Kindle. Read online An R And S Plusr Companion To Multivariate Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An R and S-Plus® Companion to Multivariate Analysis by : Brian S. Everitt
Download or read book An R and S-Plus® Companion to Multivariate Analysis written by Brian S. Everitt and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied statisticians often need to perform analyses of multivariate data; for these they will typically use one of the statistical software packages, S-Plus or R. This book sets out how to use these packages for these analyses in a concise and easy-to-use way, and will save users having to buy two books for the job. The author is well-known for this kind of book, and so buyers will trust that he’s got it right.
Book Synopsis An R and S-Plus® Companion to Multivariate Analysis by : Brian Everitt
Download or read book An R and S-Plus® Companion to Multivariate Analysis written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2005-03-17 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied statisticians often need to perform analyses of multivariate data; for these they will typically use one of the statistical software packages, S-Plus or R. This book sets out how to use these packages for these analyses in a concise and easy-to-use way, and will save users having to buy two books for the job. The author is well-known for this kind of book, and so buyers will trust that he’s got it right.
Book Synopsis A Beginner's Guide to R by : Alain Zuur
Download or read book A Beginner's Guide to R written by Alain Zuur and published by Springer Science & Business Media. This book was released on 2009-06-24 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.
Book Synopsis Statistical Data Analytics by : Walter W. Piegorsch
Download or read book Statistical Data Analytics written by Walter W. Piegorsch and published by John Wiley & Sons. This book was released on 2016-03-22 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions Manual to accompany Statistical Data Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery A comprehensive introduction to statistical methods for data mining and knowledge discovery. Extensive solutions using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.
Book Synopsis Tracking Environmental Change Using Lake Sediments by : John B.H. Birks
Download or read book Tracking Environmental Change Using Lake Sediments written by John B.H. Birks and published by Springer Science & Business Media. This book was released on 2012-04-08 with total page 751 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical and statistical methods have rapidly become part of a palaeolimnologist’s tool-kit. They are used to explore and summarise complex data, reconstruct past environmental variables from fossil assemblages, and test competing hypotheses about the causes of observed changes in lake biota through history. This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology. Visit http://extras.springer.com the Springer's Extras website to view data-sets, figures, software, and R scripts used or mentioned in this book.
Book Synopsis Tracking Environmental Change Using Lake Sediments by : H. John B. Birks
Download or read book Tracking Environmental Change Using Lake Sediments written by H. John B. Birks and published by Springer Science & Business Media. This book was released on 2012-04-06 with total page 751 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical and statistical methods have rapidly become part of a palaeolimnologist’s tool-kit. They are used to explore and summarise complex data, reconstruct past environmental variables from fossil assemblages, and test competing hypotheses about the causes of observed changes in lake biota through history. This book brings together a wide array of numerical and statistical techniques currently available for use in palaeolimnology and other branches of palaeoecology. Visit http://extras.springer.com the Springer's Extras website to view data-sets, figures, software, and R scripts used or mentioned in this book.
Book Synopsis Practicing R for Statistical Computing by : Muhammad Aslam
Download or read book Practicing R for Statistical Computing written by Muhammad Aslam and published by Springer Nature. This book was released on 2023-07-19 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to provide a comprehensive introduction to R programming for data analysis, manipulation and presentation. It covers fundamental data structures such as vectors, matrices, arrays and lists, along with techniques for exploratory data analysis, data transformation and manipulation. The book explains basic statistical concepts and demonstrates their implementation using R, including descriptive statistics, graphical representation of data, probability, popular probability distributions and hypothesis testing. It also explores linear and non-linear modeling, model selection and diagnostic tools in R. The book also covers flow control and conditional calculations by using ‘‘if’’ conditions and loops and discusses useful functions and resources for further learning. It provides an extensive list of functions grouped according to statistics classification, which can be helpful for both statisticians and R programmers. The use of different graphic devices, high-level and low-level graphical functions and adjustment of parameters are also explained. Throughout the book, R commands, functions and objects are printed in a different font for easy identification. Common errors, warnings and mistakes in R are also discussed and classified with explanations on how to prevent them.
Book Synopsis Best Practices in Quantitative Methods by : Jason W. Osborne
Download or read book Best Practices in Quantitative Methods written by Jason W. Osborne and published by SAGE. This book was released on 2008 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors to Best Practices in Quantitative Methods envision quantitative methods in the 21st century, identify the best practices, and, where possible, demonstrate the superiority of their recommendations empirically. Editor Jason W. Osborne designed this book with the goal of providing readers with the most effective, evidence-based, modern quantitative methods and quantitative data analysis across the social and behavioral sciences. The text is divided into five main sections covering select best practices in Measurement, Research Design, Basics of Data Analysis, Quantitative Methods, and Advanced Quantitative Methods. Each chapter contains a current and expansive review of the literature, a case for best practices in terms of method, outcomes, inferences, etc., and broad-ranging examples along with any empirical evidence to show why certain techniques are better. Key Features: Describes important implicit knowledge to readers: The chapters in this volume explain the important details of seemingly mundane aspects of quantitative research, making them accessible to readers and demonstrating why it is important to pay attention to these details. Compares and contrasts analytic techniques: The book examines instances where there are multiple options for doing things, and make recommendations as to what is the "best" choice—or choices, as what is best often depends on the circumstances. Offers new procedures to update and explicate traditional techniques: The featured scholars present and explain new options for data analysis, discussing the advantages and disadvantages of the new procedures in depth, describing how to perform them, and demonstrating their use. Intended Audience: Representing the vanguard of research methods for the 21st century, this book is an invaluable resource for graduate students and researchers who want a comprehensive, authoritative resource for practical and sound advice from leading experts in quantitative methods.
Book Synopsis Statistical Techniques for Network Security: Modern Statistically-Based Intrusion Detection and Protection by : Wang, Yun
Download or read book Statistical Techniques for Network Security: Modern Statistically-Based Intrusion Detection and Protection written by Wang, Yun and published by IGI Global. This book was released on 2008-10-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides statistical modeling and simulating approaches to address the needs for intrusion detection and protection. Covers topics such as network traffic data, anomaly intrusion detection, and prediction events.
Book Synopsis Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences by : Brian S. Everitt
Download or read book Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences written by Brian S. Everitt and published by CRC Press. This book was released on 2009-09-28 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues.The author begins by exploring
Book Synopsis An Introduction to Applied Multivariate Analysis with R by : Brian Everitt
Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Book Synopsis Time Series Analysis by : Jonathan D. Cryer
Download or read book Time Series Analysis written by Jonathan D. Cryer and published by Springer Science & Business Media. This book was released on 2008-03-06 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been developed for a one-semester course usually attended by students in statistics, economics, business, engineering, and quantitative social sciences. A unique feature of this edition is its integration with the R computing environment. Basic applied statistics is assumed through multiple regression. Calculus is assumed only to the extent of minimizing sums of squares but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. Actual time series data drawn from various disciplines are used throughout the book to illustrate the methodology.
Book Synopsis Introduction to Probability and Statistics Using R by : G. Jay Kerns
Download or read book Introduction to Probability and Statistics Using R written by G. Jay Kerns and published by Lulu.com. This book was released on 2010-01-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Book Synopsis Statistical Data Analysis Explained by : Clemens Reimann
Download or read book Statistical Data Analysis Explained written by Clemens Reimann and published by John Wiley & Sons. This book was released on 2011-08-31 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Book Synopsis Statistics and Finance by : David Ruppert
Download or read book Statistics and Finance written by David Ruppert and published by Springer. This book was released on 2014-02-26 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the applications of statistics and probability to finance. The basics of these subjects are reviewed and more advanced topics in statistics, such as regression, ARMA and GARCH models, the bootstrap, and nonparametric regression using splines, are introduced as needed. The book covers the classical methods of finance and it introduces the newer area of behavioral finance. Applications and use of MATLAB and SAS software are stressed. The book will serve as a text in courses aimed at advanced undergraduates and masters students. Those in the finance industry can use it for self-study.
Book Synopsis Statistical Analysis of Network Data by : Eric D. Kolaczyk
Download or read book Statistical Analysis of Network Data written by Eric D. Kolaczyk and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Book Synopsis Statistical Design by : George Casella
Download or read book Statistical Design written by George Casella and published by Springer Science & Business Media. This book was released on 2008-04-03 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical design is one of the fundamentals of our subject, being at the core of the growth of statistics during the previous century. In this book the basic theoretical underpinnings are covered. It describes the principles that drive good designs and good statistics. Design played a key role in agricultural statistics and set down principles of good practice, principles that still apply today. Statistical design is all about understanding where the variance comes from, and making sure that is where the replication is. Indeed, it is probably correct to say that these principles are even more important today.