An Introduction to the Theory of Special Divisors on Algebraic Curves

Download An Introduction to the Theory of Special Divisors on Algebraic Curves PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821816942
Total Pages : 34 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Theory of Special Divisors on Algebraic Curves by : Phillip Griffiths

Download or read book An Introduction to the Theory of Special Divisors on Algebraic Curves written by Phillip Griffiths and published by American Mathematical Soc.. This book was released on 1980-12-31 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: In May, 1979, an NSF Regional Conference was held at the University of Georgia in Athens. The topic of the conference was ``Special divisors on algebraic curves,''. This monograph gives an exposition of the elementary aspects of the theory of special divisors together with an explanation of some more advanced results that are not too technical. As such, it is intended to be an introduction to recent sources. As with most subjects, one may approach the theory of special divisors from several points of view. The one adopted here pertains to Clifford's theorem, and may be informally stated as follows: The failure of a maximally strong version of Clifford's theorem to hold imposes nontrivial conditions on the moduli of an algebraic curve. This monograph contains two sections, respectively studying special divisors using the Riemann-Roch theorem and the Jacobian variety. In the first section the author begins pretty much at ground zero, so that a reader who has only passing familiarity with Riemann surfaces or algebraic curves may be able to follow the discussion. The respective subtopics in this first section are (a) the Riemann-Roch theorem, (b) Clifford's theorem and the $\mu_0$-mapping, and (c) canonical curves and the Brill-Noether matrix. In the second section he assumes a little more, although again an attempt has been made to explain, if not prove, anything. The respective subtopics are (a) Abel's theorem, (b) the reappearance of the Brill-Noether matrix with applications to the singularities of $W_d$ and the Kleiman-Laksov existence proof, (c) special linear systems in low genus.

Algebraic Curves

Download Algebraic Curves PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 120 pages
Book Rating : 4.:/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves by : William Fulton

Download or read book Algebraic Curves written by William Fulton and published by . This book was released on 2008 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.

An Introduction to the Theory of Special Divisors on Algebraic Curves

Download An Introduction to the Theory of Special Divisors on Algebraic Curves PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (695 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Theory of Special Divisors on Algebraic Curves by :

Download or read book An Introduction to the Theory of Special Divisors on Algebraic Curves written by and published by . This book was released on 1980 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

3264 and All That

Download 3264 and All That PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107017084
Total Pages : 633 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis 3264 and All That by : David Eisenbud

Download or read book 3264 and All That written by David Eisenbud and published by Cambridge University Press. This book was released on 2016-04-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3264, the mathematical solution to a question concerning geometric figures.

Geometry of Algebraic Curves

Download Geometry of Algebraic Curves PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781475753240
Total Pages : 387 pages
Book Rating : 4.7/5 (532 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Algebraic Curves by : Enrico Arbarello

Download or read book Geometry of Algebraic Curves written by Enrico Arbarello and published by Springer. This book was released on 2013-08-30 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).

Algebraic Curves and Riemann Surfaces

Download Algebraic Curves and Riemann Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802682
Total Pages : 414 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Introduction to the Theory of Algebraic Functions of One Variable

Download Introduction to the Theory of Algebraic Functions of One Variable PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821815067
Total Pages : 204 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Theory of Algebraic Functions of One Variable by : Claude Chevalley

Download or read book Introduction to the Theory of Algebraic Functions of One Variable written by Claude Chevalley and published by American Mathematical Soc.. This book was released on 1951-12-31 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.

Algebraic Curves over a Finite Field

Download Algebraic Curves over a Finite Field PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400847419
Total Pages : 717 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves over a Finite Field by : J. W. P. Hirschfeld

Download or read book Algebraic Curves over a Finite Field written by J. W. P. Hirschfeld and published by Princeton University Press. This book was released on 2013-03-25 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

Selected Works of Phillip A. Griffiths with Commentary

Download Selected Works of Phillip A. Griffiths with Commentary PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821820872
Total Pages : 816 pages
Book Rating : 4.8/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Selected Works of Phillip A. Griffiths with Commentary by : Phillip Griffiths

Download or read book Selected Works of Phillip A. Griffiths with Commentary written by Phillip Griffiths and published by American Mathematical Soc.. This book was released on 2003 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.

Algebraic Geometry

Download Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475738498
Total Pages : 511 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry by : Robin Hartshorne

Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

The Selected Works of Phillip A. Griffiths with Commentary: Variations of hodge structure

Download The Selected Works of Phillip A. Griffiths with Commentary: Variations of hodge structure PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 600 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Selected Works of Phillip A. Griffiths with Commentary: Variations of hodge structure by : Phillip Griffiths

Download or read book The Selected Works of Phillip A. Griffiths with Commentary: Variations of hodge structure written by Phillip Griffiths and published by . This book was released on 2003 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Algebraic Geometry

Download Introduction to Algebraic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470435187
Total Pages : 498 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Algebraic Geometry by : Steven Dale Cutkosky

Download or read book Introduction to Algebraic Geometry written by Steven Dale Cutkosky and published by American Mathematical Soc.. This book was released on 2018-06-01 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Algebraic Curves and One-Dimensional Fields

Download Algebraic Curves and One-Dimensional Fields PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828622
Total Pages : 229 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves and One-Dimensional Fields by : Fedor Bogomolov

Download or read book Algebraic Curves and One-Dimensional Fields written by Fedor Bogomolov and published by American Mathematical Soc.. This book was released on 2002 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers the essential topics in the geometry of algebraic curves, such as line and vector bundles, the Riemann-Roch Theorem, divisors, coherent sheaves, and zeroth and first cohomology groups. It demonstrates how curves can act as a natural introduction to algebraic geometry.

Geometry of Algebraic Curves

Download Geometry of Algebraic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475753233
Total Pages : 402 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Algebraic Curves by : Enrico Arbarello

Download or read book Geometry of Algebraic Curves written by Enrico Arbarello and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).

Algebraic Geometry and Arithmetic Curves

Download Algebraic Geometry and Arithmetic Curves PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0191547808
Total Pages : 593 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry and Arithmetic Curves by : Qing Liu

Download or read book Algebraic Geometry and Arithmetic Curves written by Qing Liu and published by Oxford University Press. This book was released on 2006-06-29 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces

Download Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821832522
Total Pages : 176 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces by : Alexander Volberg

Download or read book Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces written by Alexander Volberg and published by American Mathematical Soc.. This book was released on 2003 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular integral operators play a central role in modern harmonic analysis. Simplest examples of singular kernels are given by Calderon-Zygmund kernels. Many important properties of singular integrals have been thoroughly studied for Calderon-Zygmund operators. In the 1980's and early 1990's, Coifman, Weiss, and Christ noticed that the theory of Calderon-Zygmund operators can be generalized from Euclidean spaces to spaces of homogeneous type. The purpose of this book is to make the reader believe that homogeneity (previously considered as a cornerstone of the theory) is not needed. This claim is illustrated by presenting two harmonic analysis problems famous for their difficulty. The first problem treats semiadditivity of analytic and Lipschitz harmonic capacities. The volume presents the first self-contained and unified proof of the semiadditivity of these capacities. The book details Tolsa's solution of Painleve's and Vitushkin's problems and explains why these are problems of the theory of Calderon-Zygmund operators on nonhomogeneous spaces. The exposition is not dimension-specific, which allows the author to treat Lipschitz harmonic capacity and analytic capacity at the same time. The second problem considered in the volume is a two-weight estimate for the Hilbert transform. This problem recently found important applications in operator theory, where it is intimately related to spectral theory of small perturbations of unitary operators. The book presents a technique that can be helpful in overcoming rather bad degeneracies (i.e., exponential growth or decay) of underlying measure (volume) on the space where the singular integral operator is considered. These situations occur, for example, in boundary value problems for elliptic PDE's in domains with extremely singular boundaries. Another example involves harmonic analysis on the boundaries of pseudoconvex domains that goes beyond the scope of Carnot-Caratheodory spaces. The book is suitable for graduate students and research mathematicians interested in harmonic analysis.

Encyclopaedia of Mathematics

Download Encyclopaedia of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400959885
Total Pages : 540 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.