Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
An Introduction To Mathematical Logic
Download An Introduction To Mathematical Logic full books in PDF, epub, and Kindle. Read online An Introduction To Mathematical Logic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Introduction to Mathematical Logic by : Richard E. Hodel
Download or read book An Introduction to Mathematical Logic written by Richard E. Hodel and published by Courier Corporation. This book was released on 2013-01-01 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Book Synopsis An Introduction to Mathematical Logic by : Richard E. Hodel
Download or read book An Introduction to Mathematical Logic written by Richard E. Hodel and published by Brooks/Cole. This book was released on 1995 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematics-based logic text with strong emphasis on recursion theory and a new approach emphasizing Godel's theorem building to Hilbert's Tenth Problem. Topics discussed include propositional logic, first order languages and first order logic against a background of logic and mathematics.
Book Synopsis Introduction to Mathematical Logic by : Elliot Mendelsohn
Download or read book Introduction to Mathematical Logic written by Elliot Mendelsohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Book Synopsis A Friendly Introduction to Mathematical Logic by : Christopher C. Leary
Download or read book A Friendly Introduction to Mathematical Logic written by Christopher C. Leary and published by Lulu.com. This book was released on 2015 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Book Synopsis A Mathematical Introduction to Logic by : Herbert B. Enderton
Download or read book A Mathematical Introduction to Logic written by Herbert B. Enderton and published by Elsevier. This book was released on 2001-01-23 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Introduction to Logic
Book Synopsis An Introduction to Mathematical Logic and Type Theory by : Peter B. Andrews
Download or read book An Introduction to Mathematical Logic and Type Theory written by Peter B. Andrews and published by Springer Science & Business Media. This book was released on 2002-07-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Book Synopsis An Algebraic Introduction to Mathematical Logic by : D.W. Barnes
Download or read book An Algebraic Introduction to Mathematical Logic written by D.W. Barnes and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Book Synopsis A Concise Introduction to Mathematical Logic by : Wolfgang Rautenberg
Download or read book A Concise Introduction to Mathematical Logic written by Wolfgang Rautenberg and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.
Book Synopsis Introduction to Mathematical Logic by : Alonzo Church
Download or read book Introduction to Mathematical Logic written by Alonzo Church and published by . This book was released on 1965 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction To Mathematical Logic (Extended Edition) by : Michal Walicki
Download or read book Introduction To Mathematical Logic (Extended Edition) written by Michal Walicki and published by World Scientific Publishing Company. This book was released on 2016-08-12 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
Book Synopsis A Concise Introduction to Mathematical Logic by : Wolfgang Rautenberg
Download or read book A Concise Introduction to Mathematical Logic written by Wolfgang Rautenberg and published by Springer. This book was released on 2010-07-01 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Book Synopsis Mathematical Logic by : H.-D. Ebbinghaus
Download or read book Mathematical Logic written by H.-D. Ebbinghaus and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Book Synopsis Introduction to Elementary Mathematical Logic by : Abram Aronovich Stolyar
Download or read book Introduction to Elementary Mathematical Logic written by Abram Aronovich Stolyar and published by Courier Corporation. This book was released on 1984-01-01 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
Book Synopsis Introduction to Mathematical Logic by : Jerome Malitz
Download or read book Introduction to Mathematical Logic written by Jerome Malitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel oped step by step with hints in the problems. Such theorems are not used later in the sequence.
Book Synopsis Modern Mathematical Logic by : Joseph Mileti
Download or read book Modern Mathematical Logic written by Joseph Mileti and published by Cambridge University Press. This book was released on 2022-09-22 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Book Synopsis Introduction to Mathematical Logic by : Alonzo Church
Download or read book Introduction to Mathematical Logic written by Alonzo Church and published by Princeton University Press. This book was released on 1996 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic account of mathematical logic from a pioneering giant in the field Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979. At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
Book Synopsis A Beginner's Guide to Mathematical Logic by : Raymond M. Smullyan
Download or read book A Beginner's Guide to Mathematical Logic written by Raymond M. Smullyan and published by Courier Corporation. This book was released on 2014-03-19 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining stories of great writers and philosophers with quotations and riddles, this original text for first courses in mathematical logic examines problems related to proofs, propositional logic and first-order logic, undecidability, and other topics. 2014 edition.