Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Algebraic And Geometric Methods In Statistics
Download Algebraic And Geometric Methods In Statistics full books in PDF, epub, and Kindle. Read online Algebraic And Geometric Methods In Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Algebraic and Geometric Methods in Statistics by : Paolo Gibilisco
Download or read book Algebraic and Geometric Methods in Statistics written by Paolo Gibilisco and published by Cambridge University Press. This book was released on 2010 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of algebraic statistics and information geometry, which also explores the emerging connections between these two disciplines.
Book Synopsis Geometric Methods in Algebra and Number Theory by : Fedor Bogomolov
Download or read book Geometric Methods in Algebra and Number Theory written by Fedor Bogomolov and published by Springer Science & Business Media. This book was released on 2006-06-22 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
Book Synopsis Differential-Geometrical Methods in Statistics by : Shun-ichi Amari
Download or read book Differential-Geometrical Methods in Statistics written by Shun-ichi Amari and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2
Book Synopsis Algebraic Geometry and Statistical Learning Theory by : Sumio Watanabe
Download or read book Algebraic Geometry and Statistical Learning Theory written by Sumio Watanabe and published by Cambridge University Press. This book was released on 2009-08-13 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.
Book Synopsis Algebraic Geometry and Commutative Algebra by : Siegfried Bosch
Download or read book Algebraic Geometry and Commutative Algebra written by Siegfried Bosch and published by Springer Nature. This book was released on 2022-04-22 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.
Book Synopsis Algebraic and Geometric Ideas in the Theory of Discrete Optimization by : Jesus A. De Loera
Download or read book Algebraic and Geometric Ideas in the Theory of Discrete Optimization written by Jesus A. De Loera and published by SIAM. This book was released on 2013-01-31 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.
Book Synopsis Methods of Algebraic Geometry in Control Theory: Part I by : Peter Falb
Download or read book Methods of Algebraic Geometry in Control Theory: Part I written by Peter Falb and published by Springer. This book was released on 2018-08-25 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: "An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik
Book Synopsis Polyhedral and Algebraic Methods in Computational Geometry by : Michael Joswig
Download or read book Polyhedral and Algebraic Methods in Computational Geometry written by Michael Joswig and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Book Synopsis An Introduction to Algebraic Statistics with Tensors by : Cristiano Bocci
Download or read book An Introduction to Algebraic Statistics with Tensors written by Cristiano Bocci and published by Springer Nature. This book was released on 2019-09-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to various aspects of Algebraic Statistics with the principal aim of supporting Master’s and PhD students who wish to explore the algebraic point of view regarding recent developments in Statistics. The focus is on the background needed to explore the connections among discrete random variables. The main objects that encode these relations are multilinear matrices, i.e., tensors. The book aims to settle the basis of the correspondence between properties of tensors and their translation in Algebraic Geometry. It is divided into three parts, on Algebraic Statistics, Multilinear Algebra, and Algebraic Geometry. The primary purpose is to describe a bridge between the three theories, so that results and problems in one theory find a natural translation to the others. This task requires, from the statistical point of view, a rather unusual, but algebraically natural, presentation of random variables and their main classical features. The third part of the book can be considered as a short, almost self-contained, introduction to the basic concepts of algebraic varieties, which are part of the fundamental background for all who work in Algebraic Statistics.
Book Synopsis Analytic, Algebraic and Geometric Aspects of Differential Equations by : Galina Filipuk
Download or read book Analytic, Algebraic and Geometric Aspects of Differential Equations written by Galina Filipuk and published by Birkhäuser. This book was released on 2017-06-23 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of interest to graduate students, early-career researchers and specialists in analysis, geometry, algebra and related areas, as well as anyone interested in learning new methods and techniques.
Book Synopsis Using Algebraic Geometry by : David A. Cox
Download or read book Using Algebraic Geometry written by David A. Cox and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Book Synopsis Algebraic Statistics for Computational Biology by : L. Pachter
Download or read book Algebraic Statistics for Computational Biology written by L. Pachter and published by Cambridge University Press. This book was released on 2005-08-22 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.
Book Synopsis Algebraic and Geometric Methods in Discrete Mathematics by : Heather A. Harrington
Download or read book Algebraic and Geometric Methods in Discrete Mathematics written by Heather A. Harrington and published by American Mathematical Soc.. This book was released on 2017-03-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics, held on January 11, 2015, in San Antonio, Texas. The papers present connections between techniques from “pure” mathematics and various applications amenable to the analysis of discrete models, encompassing applications of combinatorics, topology, algebra, geometry, optimization, and representation theory. Papers not only present novel results, but also survey the current state of knowledge of important topics in applied discrete mathematics. Particular highlights include: a new computational framework, based on geometric combinatorics, for structure prediction from RNA sequences; a new method for approximating the optimal solution of a sum of squares problem; a survey of recent Helly-type geometric theorems; applications of representation theory to voting theory and game theory; a study of fixed points of tensors; and exponential random graph models from the perspective of algebraic statistics with applications to networks. This volume was written for those trained in areas such as algebra, topology, geometry, and combinatorics who are interested in tackling problems in fields such as biology, the social sciences, data analysis, and optimization. It may be useful not only for experts, but also for students who wish to gain an applied or interdisciplinary perspective.
Book Synopsis Geometric Algebra with Applications in Engineering by : Christian Perwass
Download or read book Geometric Algebra with Applications in Engineering written by Christian Perwass and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.
Book Synopsis Lectures on Algebraic Statistics by : Mathias Drton
Download or read book Lectures on Algebraic Statistics written by Mathias Drton and published by Springer Science & Business Media. This book was released on 2009-04-25 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Book Synopsis The Geometry of Multivariate Statistics by : Thomas D. Wickens
Download or read book The Geometry of Multivariate Statistics written by Thomas D. Wickens and published by Psychology Press. This book was released on 2014-02-25 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.
Book Synopsis Statistical Methods by : David J. Saville
Download or read book Statistical Methods written by David J. Saville and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present the mathematics underlying elementary statistical methods in as simple a manner as possible. These methods include independent and paired sample t-tests, analysis of variance, regression, and the analysis of covariance. The author's principle tool is the use of geometric ideas to provide more visual insight and to make the theory accessible to a wider audience than is usually possible.