Using Algebraic Geometry

Download Using Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475769113
Total Pages : 513 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Using Algebraic Geometry by : David A. Cox

Download or read book Using Algebraic Geometry written by David A. Cox and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Introduction to Algebraic Geometry

Download Introduction to Algebraic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470435187
Total Pages : 498 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Algebraic Geometry by : Steven Dale Cutkosky

Download or read book Introduction to Algebraic Geometry written by Steven Dale Cutkosky and published by American Mathematical Soc.. This book was released on 2018-06-01 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Geometric Algebra Applications Vol. I

Download Geometric Algebra Applications Vol. I PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319748300
Total Pages : 753 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algebra Applications Vol. I by : Eduardo Bayro-Corrochano

Download or read book Geometric Algebra Applications Vol. I written by Eduardo Bayro-Corrochano and published by Springer. This book was released on 2018-06-20 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.

Applications of Geometric Algebra in Computer Science and Engineering

Download Applications of Geometric Algebra in Computer Science and Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146120089X
Total Pages : 479 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Applications of Geometric Algebra in Computer Science and Engineering by : Leo Dorst

Download or read book Applications of Geometric Algebra in Computer Science and Engineering written by Leo Dorst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

Emerging Applications of Algebraic Geometry

Download Emerging Applications of Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387096868
Total Pages : 382 pages
Book Rating : 4.3/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Emerging Applications of Algebraic Geometry by : Mihai Putinar

Download or read book Emerging Applications of Algebraic Geometry written by Mihai Putinar and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.

Geometric Algebra for Computer Science

Download Geometric Algebra for Computer Science PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080553109
Total Pages : 664 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algebra for Computer Science by : Leo Dorst

Download or read book Geometric Algebra for Computer Science written by Leo Dorst and published by Elsevier. This book was released on 2010-07-26 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Geometric Algebra with Applications in Engineering

Download Geometric Algebra with Applications in Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540890688
Total Pages : 389 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algebra with Applications in Engineering by : Christian Perwass

Download or read book Geometric Algebra with Applications in Engineering written by Christian Perwass and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.

Algebraic Geometry

Download Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475738498
Total Pages : 511 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry by : Robin Hartshorne

Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Geometric Algebra Applications Vol. II

Download Geometric Algebra Applications Vol. II PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030349780
Total Pages : 609 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algebra Applications Vol. II by : Eduardo Bayro-Corrochano

Download or read book Geometric Algebra Applications Vol. II written by Eduardo Bayro-Corrochano and published by Springer Nature. This book was released on 2020-06-19 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.

Algebraic Geometry and Commutative Algebra

Download Algebraic Geometry and Commutative Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447148290
Total Pages : 508 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry and Commutative Algebra by : Siegfried Bosch

Download or read book Algebraic Geometry and Commutative Algebra written by Siegfried Bosch and published by Springer Science & Business Media. This book was released on 2012-11-15 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry is a fascinating branch of mathematics that combines methods from both, algebra and geometry. It transcends the limited scope of pure algebra by means of geometric construction principles. Moreover, Grothendieck’s schemes invented in the late 1950s allowed the application of algebraic-geometric methods in fields that formerly seemed to be far away from geometry, like algebraic number theory. The new techniques paved the way to spectacular progress such as the proof of Fermat’s Last Theorem by Wiles and Taylor. The scheme-theoretic approach to algebraic geometry is explained for non-experts. More advanced readers can use the book to broaden their view on the subject. A separate part deals with the necessary prerequisites from commutative algebra. On a whole, the book provides a very accessible and self-contained introduction to algebraic geometry, up to a quite advanced level. Every chapter of the book is preceded by a motivating introduction with an informal discussion of the contents. Typical examples and an abundance of exercises illustrate each section. This way the book is an excellent solution for learning by yourself or for complementing knowledge that is already present. It can equally be used as a convenient source for courses and seminars or as supplemental literature.

A First Course in Computational Algebraic Geometry

Download A First Course in Computational Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107612535
Total Pages : 127 pages
Book Rating : 4.1/5 (76 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Computational Algebraic Geometry by : Wolfram Decker

Download or read book A First Course in Computational Algebraic Geometry written by Wolfram Decker and published by Cambridge University Press. This book was released on 2013-02-07 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: A quick guide to computing in algebraic geometry with many explicit computational examples introducing the computer algebra system Singular.

Algebra & Geometry

Download Algebra & Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482246503
Total Pages : 310 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Algebra & Geometry by : Mark V. Lawson

Download or read book Algebra & Geometry written by Mark V. Lawson and published by CRC Press. This book was released on 2016-11-25 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra

Introduction to Non-linear Algebra

Download Introduction to Non-linear Algebra PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812708006
Total Pages : 286 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Non-linear Algebra by : Valeri? Valer?evich Dolotin

Download or read book Introduction to Non-linear Algebra written by Valeri? Valer?evich Dolotin and published by World Scientific. This book was released on 2007 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Literaturverz. S. 267 - 269

Algebraic Geometry for Scientists and Engineers

Download Algebraic Geometry for Scientists and Engineers PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821815350
Total Pages : 311 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry for Scientists and Engineers by : Shreeram Shankar Abhyankar

Download or read book Algebraic Geometry for Scientists and Engineers written by Shreeram Shankar Abhyankar and published by American Mathematical Soc.. This book was released on 1990 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, this book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities.

Linear Algebra and Geometry

Download Linear Algebra and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642309941
Total Pages : 536 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Geometry by : Igor R. Shafarevich

Download or read book Linear Algebra and Geometry written by Igor R. Shafarevich and published by Springer Science & Business Media. This book was released on 2012-08-23 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.

Computational Algebraic Geometry

Download Computational Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521536509
Total Pages : 212 pages
Book Rating : 4.5/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Computational Algebraic Geometry by : Hal Schenck

Download or read book Computational Algebraic Geometry written by Hal Schenck and published by Cambridge University Press. This book was released on 2003-10-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interplay between algebra and geometry is a beautiful (and fun!) area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens wonderful new vistas and allows us to pose, study and solve problems that were previously out of reach. Suitable for graduate students, the objective of this 2003 book is to bring advanced algebra to life with lots of examples. The first chapters provide an introduction to commutative algebra and connections to geometry. The rest of the book focuses on three active areas of contemporary algebra: Homological Algebra (the snake lemma, long exact sequence inhomology, functors and derived functors (Tor and Ext), and double complexes); Algebraic Combinatorics and Algebraic Topology (simplicial complexes and simplicial homology, Stanley-Reisner rings, upper bound theorem and polytopes); and Algebraic Geometry (points and curves in projective space, Riemann-Roch, Cech cohomology, regularity).

Foundations of Geometric Algebra Computing

Download Foundations of Geometric Algebra Computing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642317944
Total Pages : 217 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Geometric Algebra Computing by : Dietmar Hildenbrand

Download or read book Foundations of Geometric Algebra Computing written by Dietmar Hildenbrand and published by Springer Science & Business Media. This book was released on 2012-12-31 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.