Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Agile Data Science 20
Download Agile Data Science 20 full books in PDF, epub, and Kindle. Read online Agile Data Science 20 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Agile Data Science 2.0 by : Russell Jurney
Download or read book Agile Data Science 2.0 written by Russell Jurney and published by "O'Reilly Media, Inc.". This book was released on 2017-06-07 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track
Book Synopsis Agile Data Science by : Russell Jurney
Download or read book Agile Data Science written by Russell Jurney and published by "O'Reilly Media, Inc.". This book was released on 2013-10-15 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track
Book Synopsis Practical DataOps by : Harvinder Atwal
Download or read book Practical DataOps written by Harvinder Atwal and published by Apress. This book was released on 2019-12-09 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products Who This Book Is For Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.
Book Synopsis Agile Data Science 2.0 by : Russell Jurney
Download or read book Agile Data Science 2.0 written by Russell Jurney and published by "O'Reilly Media, Inc.". This book was released on 2017-06-07 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track
Book Synopsis Agile Data Science by : Russell Jurney
Download or read book Agile Data Science written by Russell Jurney and published by "O'Reilly Media, Inc.". This book was released on 2013-10-15 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track
Book Synopsis Agile Machine Learning with DataRobot by : Bipin Chadha
Download or read book Agile Machine Learning with DataRobot written by Bipin Chadha and published by Packt Publishing Ltd. This book was released on 2021-12-24 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage DataRobot's enterprise AI platform and automated decision intelligence to extract business value from data Key FeaturesGet well-versed with DataRobot features using real-world examplesUse this all-in-one platform to build, monitor, and deploy ML models for handling the entire production life cycleMake use of advanced DataRobot capabilities to programmatically build and deploy a large number of ML modelsBook Description DataRobot enables data science teams to become more efficient and productive. This book helps you to address machine learning (ML) challenges with DataRobot's enterprise platform, enabling you to extract business value from data and rapidly create commercial impact for your organization. You'll begin by learning how to use DataRobot's features to perform data prep and cleansing tasks automatically. The book then covers best practices for building and deploying ML models, along with challenges faced while scaling them to handle complex business problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare your data to build ML models and ways to interpret results. You'll also discover how to analyze the model's predictions and turn them into actionable insights for business users. Next, you'll create model documentation for internal as well as compliance purposes and learn how the model gets deployed as an API. In addition, you'll find out how to operationalize and monitor the model's performance. Finally, you'll work with examples on time series forecasting, NLP, image processing, MLOps, and more using advanced DataRobot capabilities. By the end of this book, you'll have learned to use DataRobot's AutoML and MLOps features to scale ML model building by avoiding repetitive tasks and common errors. What you will learnUnderstand and solve business problems using DataRobotUse DataRobot to prepare your data and perform various data analysis tasks to start building modelsDevelop robust ML models and assess their results correctly before deploymentExplore various DataRobot functions and outputs to help you understand the models and select the one that best solves the business problemAnalyze a model's predictions and turn them into actionable insights for business usersUnderstand how DataRobot helps in governing, deploying, and maintaining ML modelsWho this book is for This book is for data scientists, data analysts, and data enthusiasts looking for a practical guide to building and deploying robust machine learning models using DataRobot. Experienced data scientists will also find this book helpful for rapidly exploring, building, and deploying a broader range of models. The book assumes a basic understanding of machine learning.
Book Synopsis Agile Machine Learning by : Eric Carter
Download or read book Agile Machine Learning written by Eric Carter and published by Apress. This book was released on 2019-08-21 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build resilient applied machine learning teams that deliver better data products through adapting the guiding principles of the Agile Manifesto. Bringing together talented people to create a great applied machine learning team is no small feat. With developers and data scientists both contributing expertise in their respective fields, communication alone can be a challenge. Agile Machine Learning teaches you how to deliver superior data products through agile processes and to learn, by example, how to organize and manage a fast-paced team challenged with solving novel data problems at scale, in a production environment. The authors’ approach models the ground-breaking engineering principles described in the Agile Manifesto. The book provides further context, and contrasts the original principles with the requirements of systems that deliver a data product. What You'll Learn Effectively run a data engineering team that is metrics-focused, experiment-focused, and data-focused Make sound implementation and model exploration decisions based on the data and the metrics Know the importance of data wallowing: analyzing data in real time in a group setting Recognize the value of always being able to measure your current state objectively Understand data literacy, a key attribute of a reliable data engineer, from definitions to expectations Who This Book Is For Anyone who manages a machine learning team, or is responsible for creating production-ready inference components. Anyone responsible for data project workflow of sampling data; labeling, training, testing, improving, and maintaining models; and system and data metrics will also find this book useful. Readers should be familiar with software engineering and understand the basics of machine learning and working with data.
Download or read book Agile Analytics written by Ken Collier and published by Addison-Wesley. This book was released on 2012 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve "back-end" data management, "front-end" business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way.
Book Synopsis How to Lead in Data Science by : Jike Chong
Download or read book How to Lead in Data Science written by Jike Chong and published by Simon and Schuster. This book was released on 2021-12-28 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
Book Synopsis Agile Actors on Complex Terrains by : Graham Room
Download or read book Agile Actors on Complex Terrains written by Graham Room and published by Routledge. This book was released on 2016-06-17 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assesses the value and relevance of the literature on complex systems to policy-making, contributing to both social theory and policy analysis. For this purpose it develops two key ideas: agile action and transformative realism. The book takes some major themes from complexity science, presents them in a clear and accessible manner and applies them to core problems in sociological theory and policy analysis. Combining complexity science with perspectives from institutionalism and political economy, this book is the first to integrate these fields conceptually, methodologically and in terms of the implications for policy analysis and practice. Room shows how the models and methods of social and complexity science can be jointly deployed and applied to empirical areas of public policy. He demonstrates how complexity science can provide insight into the nonlinear dynamics of the social world, but why these need to be understood by reference to the unequal distribution of power and advantage. Among the sociological debates with which the book engages are those concerned with causation and explanation, rational action and positional competition, and the place of evolutionary concepts in accounts of social change. Among the policy debates are those concerned with evidence and policy, the dynamics of inequality, and libertarian paternalism. The book will appeal to final year undergraduates and postgraduate students in social sciences; scholars in social and policy studies broadly defined; policy-makers who want to go beyond conventional discussions of evidence-based policy-making and cross-national lesson-drawing, and consider how to approach complex and turbulent policy terrains; and a wider range of scholars in other disciplines where complexity science is already well developed.
Book Synopsis Agile Data Warehouse Design by : Lawrence Corr
Download or read book Agile Data Warehouse Design written by Lawrence Corr and published by DecisionOne Consulting. This book was released on 2011-11 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
Book Synopsis Data Science at the Command Line by : Jeroen Janssens
Download or read book Data Science at the Command Line written by Jeroen Janssens and published by "O'Reilly Media, Inc.". This book was released on 2014-09-25 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
Book Synopsis Intelligence-Based Medicine by : Anthony C. Chang
Download or read book Intelligence-Based Medicine written by Anthony C. Chang and published by Academic Press. This book was released on 2020-06-27 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare
Book Synopsis Data Science and Big Data Analytics by : EMC Education Services
Download or read book Data Science and Big Data Analytics written by EMC Education Services and published by John Wiley & Sons. This book was released on 2014-12-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Book Synopsis Agile and Iterative Development by : Craig Larman
Download or read book Agile and Iterative Development written by Craig Larman and published by Addison-Wesley Professional. This book was released on 2004 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the definitive guide for managers and students to agile and iterativedevelopment methods: what they are, how they work, how to implement them, andwhy they should.
Download or read book Clean Agile written by Robert C. Martin and published by Prentice Hall. This book was released on 2019-09-12 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agile Values and Principles for a New Generation “In the journey to all things Agile, Uncle Bob has been there, done that, and has the both the t-shirt and the scars to show for it. This delightful book is part history, part personal stories, and all wisdom. If you want to understand what Agile is and how it came to be, this is the book for you.” –Grady Booch “Bob’s frustration colors every sentence of Clean Agile, but it’s a justified frustration. What is in the world of Agile development is nothing compared to what could be. This book is Bob’s perspective on what to focus on to get to that ‘what could be.’ And he’s been there, so it’s worth listening.” –Kent Beck “It’s good to read Uncle Bob’s take on Agile. Whether just beginning, or a seasoned Agilista, you would do well to read this book. I agree with almost all of it. It’s just some of the parts make me realize my own shortcomings, dammit. It made me double-check our code coverage (85.09%).” –Jon Kern Nearly twenty years after the Agile Manifesto was first presented, the legendary Robert C. Martin (“Uncle Bob”) reintroduces Agile values and principles for a new generation–programmers and nonprogrammers alike. Martin, author of Clean Code and other highly influential software development guides, was there at Agile’s founding. Now, in Clean Agile: Back to Basics, he strips away misunderstandings and distractions that over the years have made it harder to use Agile than was originally intended. Martin describes what Agile is in no uncertain terms: a small discipline that helps small teams manage small projects . . . with huge implications because every big project is comprised of many small projects. Drawing on his fifty years’ experience with projects of every conceivable type, he shows how Agile can help you bring true professionalism to software development. Get back to the basics–what Agile is, was, and should always be Understand the origins, and proper practice, of SCRUM Master essential business-facing Agile practices, from small releases and acceptance tests to whole-team communication Explore Agile team members’ relationships with each other, and with their product Rediscover indispensable Agile technical practices: TDD, refactoring, simple design, and pair programming Understand the central roles values and craftsmanship play in your Agile team’s success If you want Agile’s true benefits, there are no shortcuts: You need to do Agile right. Clean Agile: Back to Basics will show you how, whether you’re a developer, tester, manager, project manager, or customer. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1668437031 Total Pages :2164 pages Book Rating :4.6/5 (684 download)
Book Synopsis Research Anthology on Agile Software, Software Development, and Testing by : Management Association, Information Resources
Download or read book Research Anthology on Agile Software, Software Development, and Testing written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-11-26 with total page 2164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software development continues to be an ever-evolving field as organizations require new and innovative programs that can be implemented to make processes more efficient, productive, and cost-effective. Agile practices particularly have shown great benefits for improving the effectiveness of software development and its maintenance due to their ability to adapt to change. It is integral to remain up to date with the most emerging tactics and techniques involved in the development of new and innovative software. The Research Anthology on Agile Software, Software Development, and Testing is a comprehensive resource on the emerging trends of software development and testing. This text discusses the newest developments in agile software and its usage spanning multiple industries. Featuring a collection of insights from diverse authors, this research anthology offers international perspectives on agile software. Covering topics such as global software engineering, knowledge management, and product development, this comprehensive resource is valuable to software developers, software engineers, computer engineers, IT directors, students, managers, faculty, researchers, and academicians.