Numerical Analysis of Partial Differential Equations

Download Numerical Analysis of Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118111117
Total Pages : 506 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui

Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Analytic Methods for Partial Differential Equations

Download Analytic Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447103793
Total Pages : 308 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Analytic Methods for Partial Differential Equations by : G. Evans

Download or read book Analytic Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Acta Numerica 2004: Volume 13

Download Acta Numerica 2004: Volume 13 PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521838115
Total Pages : 450 pages
Book Rating : 4.8/5 (381 download)

DOWNLOAD NOW!


Book Synopsis Acta Numerica 2004: Volume 13 by : Arieh Iserles

Download or read book Acta Numerica 2004: Volume 13 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2004-06-03 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351425862
Total Pages : 364 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : J. Necas

Download or read book Partial Differential Equations written by J. Necas and published by Routledge. This book was released on 2018-05-04 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: As a satellite conference of the 1998 International Mathematical Congress and part of the celebration of the 650th anniversary of Charles University, the Partial Differential Equations Theory and Numerical Solution conference was held in Prague in August, 1998. With its rich scientific program, the conference provided an opportunity for almost 200 participants to gather and discuss emerging directions and recent developments in partial differential equations (PDEs). This volume comprises the Proceedings of that conference. In it, leading specialists in partial differential equations, calculus of variations, and numerical analysis present up-to-date results, applications, and advances in numerical methods in their fields. Conference organizers chose the contributors to bring together the scientists best able to present a complex view of problems, starting from the modeling, passing through the mathematical treatment, and ending with numerical realization. The applications discussed include fluid dynamics, semiconductor technology, image analysis, motion analysis, and optimal control. The importance and quantity of research carried out around the world in this field makes it imperative for researchers, applied mathematicians, physicists and engineers to keep up with the latest developments. With its panel of international contributors and survey of the recent ramifications of theory, applications, and numerical methods, Partial Differential Equations: Theory and Numerical Solution provides a convenient means to that end.

A First Course in the Numerical Analysis of Differential Equations

Download A First Course in the Numerical Analysis of Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521734908
Total Pages : 481 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles

Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Numerical Solution of Ordinary Differential Equations

Download Numerical Solution of Ordinary Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118164520
Total Pages : 272 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson

Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Introduction to Numerical Analysis

Download Introduction to Numerical Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475722729
Total Pages : 674 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Numerical Analysis by : J. Stoer

Download or read book Introduction to Numerical Analysis written by J. Stoer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

Numerical Methods for Partial Differential Equations

Download Numerical Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447103777
Total Pages : 299 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Partial Differential Equations by : G. Evans

Download or read book Numerical Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

How to Think About Analysis

Download How to Think About Analysis PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191035378
Total Pages : 272 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis How to Think About Analysis by : Lara Alcock

Download or read book How to Think About Analysis written by Lara Alcock and published by OUP Oxford. This book was released on 2014-09-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.

Ordinary and Partial Differential Equations

Download Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387791469
Total Pages : 422 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Ordinary and Partial Differential Equations by : Ravi P. Agarwal

Download or read book Ordinary and Partial Differential Equations written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2008-11-13 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Classical and Modern Numerical Analysis

Download Classical and Modern Numerical Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420091581
Total Pages : 628 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Classical and Modern Numerical Analysis by : Azmy S. Ackleh

Download or read book Classical and Modern Numerical Analysis written by Azmy S. Ackleh and published by CRC Press. This book was released on 2009-07-20 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis.The text covers the main areas o

Collocation Methods for Volterra Integral and Related Functional Differential Equations

Download Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521806152
Total Pages : 620 pages
Book Rating : 4.8/5 (61 download)

DOWNLOAD NOW!


Book Synopsis Collocation Methods for Volterra Integral and Related Functional Differential Equations by : Hermann Brunner

Download or read book Collocation Methods for Volterra Integral and Related Functional Differential Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2004-11-15 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

NBS Special Publication

Download NBS Special Publication PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 398 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis NBS Special Publication by :

Download or read book NBS Special Publication written by and published by . This book was released on 1968 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Download Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119423449
Total Pages : 254 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Advanced Numerical and Semi-Analytical Methods for Differential Equations by : Snehashish Chakraverty

Download or read book Advanced Numerical and Semi-Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-03-20 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Numerical Methods for Partial Differential Equations

Download Numerical Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483262421
Total Pages : 380 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Partial Differential Equations by : William F. Ames

Download or read book Numerical Methods for Partial Differential Equations written by William F. Ames and published by Academic Press. This book was released on 2014-05-10 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.