Probabilistic Reasoning in Intelligent Systems

Download Probabilistic Reasoning in Intelligent Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080514898
Total Pages : 573 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Reasoning in Intelligent Systems by : Judea Pearl

Download or read book Probabilistic Reasoning in Intelligent Systems written by Judea Pearl and published by Elsevier. This book was released on 2014-06-28 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Advances in Artificial Intelligence

Download Advances in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540421443
Total Pages : 372 pages
Book Rating : 4.4/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Advances in Artificial Intelligence by : Eleni Stroulia

Download or read book Advances in Artificial Intelligence written by Eleni Stroulia and published by Springer. This book was released on 2001-05-16 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: AI 2001 is the 14th in the series of Arti cial Intelligence conferences sponsored by the Canadian Society for Computational Studies of Intelligence/Soci et e - nadienne pour l’ etude de l’intelligence par ordinateur. As was the case last year too, the conference is being held in conjunction with the annual conferences of two other Canadian societies, Graphics Interface (GI 2001) and Vision Int- face (VI 2001). We believe that the overall experience will be enriched by this conjunction of conferences. This year is the \silver anniversary" of the conference: the rst Canadian AI conference was held in 1976 at UBC. During its lifetime, it has attracted Canadian and international papers of high quality from a variety of AI research areas. All papers submitted to the conference received at least three indep- dent reviews. Approximately one third were accepted for plenary presentation at the conference. The best paper of the conference will be invited to appear in Computational Intelligence.

Learning Bayesian Networks

Download Learning Bayesian Networks PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 704 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Learning Bayesian Networks by : Richard E. Neapolitan

Download or read book Learning Bayesian Networks written by Richard E. Neapolitan and published by Prentice Hall. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.

Interactive Collaborative Information Systems

Download Interactive Collaborative Information Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642116884
Total Pages : 598 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Interactive Collaborative Information Systems by : Robert Babuška

Download or read book Interactive Collaborative Information Systems written by Robert Babuška and published by Springer. This book was released on 2010-03-22 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing complexity of our world demands new perspectives on the role of technology in decision making. Human decision making has its li- tations in terms of information-processing capacity. We need new technology to cope with the increasingly complex and information-rich nature of our modern society. This is particularly true for critical environments such as crisis management and tra?c management, where humans need to engage in close collaborations with arti?cial systems to observe and understand the situation and respond in a sensible way. We believe that close collaborations between humans and arti?cial systems will become essential and that the importance of research into Interactive Collaborative Information Systems (ICIS) is self-evident. Developments in information and communication technology have ra- cally changed our working environments. The vast amount of information available nowadays and the wirelessly networked nature of our modern so- ety open up new opportunities to handle di?cult decision-making situations such as computer-supported situation assessment and distributed decision making. To make good use of these new possibilities, we need to update our traditional views on the role and capabilities of information systems. The aim of the Interactive Collaborative Information Systems project is to develop techniques that support humans in complex information en- ronments and that facilitate distributed decision-making capabilities. ICIS emphasizes the importance of building actor-agent communities: close c- laborations between human and arti?cial actors that highlight their comp- mentary capabilities, and in which task distribution is ?exible and adaptive.

Bayesian Networks and Decision Graphs

Download Bayesian Networks and Decision Graphs PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387682821
Total Pages : 457 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks and Decision Graphs by : Thomas Dyhre Nielsen

Download or read book Bayesian Networks and Decision Graphs written by Thomas Dyhre Nielsen and published by Springer Science & Business Media. This book was released on 2009-03-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a brand new edition of an essential work on Bayesian networks and decision graphs. It is an introduction to probabilistic graphical models including Bayesian networks and influence diagrams. The reader is guided through the two types of frameworks with examples and exercises, which also give instruction on how to build these models. Structured in two parts, the first section focuses on probabilistic graphical models, while the second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision process and partially ordered decision problems.

Bayesian Networks

Download Bayesian Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000410382
Total Pages : 275 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks by : Marco Scutari

Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Probabilistic Reasoning in Expert Systems

Download Probabilistic Reasoning in Expert Systems PDF Online Free

Author :
Publisher : CreateSpace
ISBN 13 : 9781477452547
Total Pages : 448 pages
Book Rating : 4.4/5 (525 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Reasoning in Expert Systems by : Richard E. Neapolitan

Download or read book Probabilistic Reasoning in Expert Systems written by Richard E. Neapolitan and published by CreateSpace. This book was released on 2012-06-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a reprint of the seminal 1989 book Probabilistic Reasoning in Expert systems: Theory and Algorithms, which helped serve to create the field we now call Bayesian networks. It introduces the properties of Bayesian networks (called causal networks in the text), discusses algorithms for doing inference in Bayesian networks, covers abductive inference, and provides an introduction to decision analysis. Furthermore, it compares rule-base experts systems to ones based on Bayesian networks, and it introduces the frequentist and Bayesian approaches to probability. Finally, it provides a critique of the maximum entropy formalism. Probabilistic Reasoning in Expert Systems was written from the perspective of a mathematician with the emphasis being on the development of theorems and algorithms. Every effort was made to make the material accessible. There are ample examples throughout the text. This text is important reading for anyone interested in both the fundamentals of Bayesian networks and in the history of how they came to be. It also provides an insightful comparison of the two most prominent approaches to probability.

Modeling and Reasoning with Bayesian Networks

Download Modeling and Reasoning with Bayesian Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521884381
Total Pages : 561 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Reasoning with Bayesian Networks by : Adnan Darwiche

Download or read book Modeling and Reasoning with Bayesian Networks written by Adnan Darwiche and published by Cambridge University Press. This book was released on 2009-04-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Bayesian Reasoning and Machine Learning

Download Bayesian Reasoning and Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521518148
Total Pages : 739 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Reasoning and Machine Learning by : David Barber

Download or read book Bayesian Reasoning and Machine Learning written by David Barber and published by Cambridge University Press. This book was released on 2012-02-02 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Innovations in Bayesian Networks

Download Innovations in Bayesian Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354085066X
Total Pages : 324 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Innovations in Bayesian Networks by : Dawn E. Holmes

Download or read book Innovations in Bayesian Networks written by Dawn E. Holmes and published by Springer. This book was released on 2008-09-10 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.

Computational Learning and Probabilistic Reasoning

Download Computational Learning and Probabilistic Reasoning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 352 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Computational Learning and Probabilistic Reasoning by : Alexander Gammerman

Download or read book Computational Learning and Probabilistic Reasoning written by Alexander Gammerman and published by John Wiley & Sons. This book was released on 1996-08-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a unified coverage of the latest research and applications methods and techniques, this book is devoted to two interrelated techniques for solving some important problems in machine intelligence and pattern recognition, namely probabilistic reasoning and computational learning. The contributions in this volume describe and explore the current developments in computer science and theoretical statistics which provide computational probabilistic models for manipulating knowledge found in industrial and business data. These methods are very efficient for handling complex problems in medicine, commerce and finance. Part I covers Generalisation Principles and Learning and describes several new inductive principles and techniques used in computational learning. Part II describes Causation and Model Selection including the graphical probabilistic models that exploit the independence relationships presented in the graphs, and applications of Bayesian networks to multivariate statistical analysis. Part III includes case studies and descriptions of Bayesian Belief Networks and Hybrid Systems. Finally, Part IV on Decision-Making, Optimization and Classification describes some related theoretical work in the field of probabilistic reasoning. Statisticians, IT strategy planners, professionals and researchers with interests in learning, intelligent databases and pattern recognition and data processing for expert systems will find this book to be an invaluable resource. Real-life problems are used to demonstrate the practical and effective implementation of the relevant algorithms and techniques.

Bayesian Networks

Download Bayesian Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470994542
Total Pages : 446 pages
Book Rating : 4.9/5 (945 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks by : Olivier Pourret

Download or read book Bayesian Networks written by Olivier Pourret and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

Probabilistic Reasoning and Bayesian Belief Networks

Download Probabilistic Reasoning and Bayesian Belief Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 300 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Reasoning and Bayesian Belief Networks by : Alexander Gammerman

Download or read book Probabilistic Reasoning and Bayesian Belief Networks written by Alexander Gammerman and published by . This book was released on 1995 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

New Advances in Intelligence and Security Informatics

Download New Advances in Intelligence and Security Informatics PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123973244
Total Pages : 129 pages
Book Rating : 4.1/5 (239 download)

DOWNLOAD NOW!


Book Synopsis New Advances in Intelligence and Security Informatics by : Wenji Mao

Download or read book New Advances in Intelligence and Security Informatics written by Wenji Mao and published by Academic Press. This book was released on 2012-04-16 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international security, in recent years, new directions in ISI research and applications have emerged to address complicated problems with advanced technologies. This book provides a comprehensive and interdisciplinary account of the new advances in ISI area along three fundamental dimensions: methodological issues in security informatics; new technological developments to support security-related modeling, detection, analysis and prediction; and applications and integration in interdisciplinary socio-cultural fields. - Identifies emerging directions in ISI research and applications that address the research challenges with advanced technologies - Provides an integrated account of the new advances in ISI field in three core aspects: methodology, technological developments and applications - Benefits researchers as well as security professionals who are involved in cutting-edge research and applications in security informatics and related fields

Bayesian Nets and Causality: Philosophical and Computational Foundations

Download Bayesian Nets and Causality: Philosophical and Computational Foundations PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 019853079X
Total Pages : 250 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nets and Causality: Philosophical and Computational Foundations by : Jon Williamson

Download or read book Bayesian Nets and Causality: Philosophical and Computational Foundations written by Jon Williamson and published by Oxford University Press. This book was released on 2005 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nets are used in artificial intelligence as a calculus for causal reasoning, enabling machines to make predictions perform diagnoses, take decisions and even to discover causal relationships. This book brings together how to automate reasoning in artificial intelligence, and the nature of causality and probability in philosophy.

Probabilistic Networks and Expert Systems

Download Probabilistic Networks and Expert Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387718231
Total Pages : 340 pages
Book Rating : 4.7/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Networks and Expert Systems by : Robert G. Cowell

Download or read book Probabilistic Networks and Expert Systems written by Robert G. Cowell and published by Springer Science & Business Media. This book was released on 2007-07-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.

Bayesian Network

Download Bayesian Network PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9533071249
Total Pages : 446 pages
Book Rating : 4.5/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Network by : Ahmed Rebai

Download or read book Bayesian Network written by Ahmed Rebai and published by BoD – Books on Demand. This book was released on 2010-08-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian networks are a very general and powerful tool that can be used for a large number of problems involving uncertainty: reasoning, learning, planning and perception. They provide a language that supports efficient algorithms for the automatic construction of expert systems in several different contexts. The range of applications of Bayesian networks currently extends over almost all fields including engineering, biology and medicine, information and communication technologies and finance. This book is a collection of original contributions to the methodology and applications of Bayesian networks. It contains recent developments in the field and illustrates, on a sample of applications, the power of Bayesian networks in dealing the modeling of complex systems. Readers that are not familiar with this tool, but have some technical background, will find in this book all necessary theoretical and practical information on how to use and implement Bayesian networks in their own work. There is no doubt that this book constitutes a valuable resource for engineers, researchers, students and all those who are interested in discovering and experiencing the potential of this major tool of the century.