Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Hybrid Markov Chain For The Bayesian Analysis Of The Multinomial Probit Model
Download A Hybrid Markov Chain For The Bayesian Analysis Of The Multinomial Probit Model full books in PDF, epub, and Kindle. Read online A Hybrid Markov Chain For The Bayesian Analysis Of The Multinomial Probit Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Bayesian Statistical Modelling by : Peter Congdon
Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
Book Synopsis Case Studies in Bayesian Statistics by : Constantine Gatsonis
Download or read book Case Studies in Bayesian Statistics written by Constantine Gatsonis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume of case studies presents detailed applications of Bayesian statistical analysis, emphasising the scientific context. The papers were presented and discussed at a workshop held at Carnegie-Mellon University, and this volume - dedicated to the memory of Morrie Groot-reproduces six invited papers, each with accompanying invited discussion, and nine contributed papers with the focus on econometric applications.
Book Synopsis Simulation-based Inference in Econometrics by : Roberto Mariano
Download or read book Simulation-based Inference in Econometrics written by Roberto Mariano and published by Cambridge University Press. This book was released on 2000-07-20 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Book Synopsis Bayesian Models for Categorical Data by : Peter Congdon
Download or read book Bayesian Models for Categorical Data written by Peter Congdon and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Book Synopsis Bayesian Statistics and Marketing by : Peter E. Rossi
Download or read book Bayesian Statistics and Marketing written by Peter E. Rossi and published by John Wiley & Sons. This book was released on 2012-05-14 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.
Book Synopsis Bayesian Model Selection and Statistical Modeling by : Tomohiro Ando
Download or read book Bayesian Model Selection and Statistical Modeling written by Tomohiro Ando and published by CRC Press. This book was released on 2010-05-27 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with many practical applications, Bayesian Model Selection and Statistical Modeling presents an array of Bayesian inference and model selection procedures. It thoroughly explains the concepts, illustrates the derivations of various Bayesian model selection criteria through examples, and provides R code for implementation. The author shows how to implement a variety of Bayesian inference using R and sampling methods, such as Markov chain Monte Carlo. He covers the different types of simulation-based Bayesian model selection criteria, including the numerical calculation of Bayes factors, the Bayesian predictive information criterion, and the deviance information criterion. He also provides a theoretical basis for the analysis of these criteria. In addition, the author discusses how Bayesian model averaging can simultaneously treat both model and parameter uncertainties. Selecting and constructing the appropriate statistical model significantly affect the quality of results in decision making, forecasting, stochastic structure explorations, and other problems. Helping you choose the right Bayesian model, this book focuses on the framework for Bayesian model selection and includes practical examples of model selection criteria.
Book Synopsis Handbook of Mixture Analysis by : Sylvia Fruhwirth-Schnatter
Download or read book Handbook of Mixture Analysis written by Sylvia Fruhwirth-Schnatter and published by CRC Press. This book was released on 2019-01-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.
Book Synopsis Monte Carlo Statistical Methods by : Christian Robert
Download or read book Monte Carlo Statistical Methods written by Christian Robert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
Book Synopsis Handbook of Computational Statistics by : James E. Gentle
Download or read book Handbook of Computational Statistics written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2012-07-06 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Download or read book Statistica Sinica written by and published by . This book was released on 2009 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematische Annalen by : Alfred Clebsch
Download or read book Mathematische Annalen written by Alfred Clebsch and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Sampling Correlation Matrices and Analyzing Longitudinal Categorical Data Using a Multivariate Probit Model by : Xiao Zhang
Download or read book Sampling Correlation Matrices and Analyzing Longitudinal Categorical Data Using a Multivariate Probit Model written by Xiao Zhang and published by . This book was released on 2004 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Theory and Method Abstracts by :
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 1999 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Computational Systems Bioinformatics by : Xiaobo Zhou
Download or read book Computational Systems Bioinformatics written by Xiaobo Zhou and published by World Scientific. This book was released on 2008 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational systems biology is a new and rapidly developing field of research, concerned with understanding the structure and processes of biological systems at the molecular, cellular, tissue, and organ levels through computational modeling as well as novel information theoretic data and image analysis methods. By focusing on either information processing of biological data or on modeling physical and chemical processes of biosystems, and in combination with the recent breakthrough in deciphering the human genome, computational systems biology is guaranteed to play a central role in disease prediction and preventive medicine, gene technology and pharmaceuticals, and other biotechnology fields. This book begins by introducing the basic mathematical, statistical, and data mining principles of computational systems biology, and then presents bioinformatics technology in microarray and sequence analysis step-by-step. Offering an insightful look into the effectiveness of the systems approach in computational biology, it focuses on recurrent themes in bioinformatics, biomedical applications, and future directions for research.
Book Synopsis Contemporary Bayesian Econometrics and Statistics by : John Geweke
Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Book Synopsis Latent Variable Models for Multivariate Spatial Data by : Xuan Liu
Download or read book Latent Variable Models for Multivariate Spatial Data written by Xuan Liu and published by . This book was released on 2005 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Logit and Probit by : Vani K. Borooah
Download or read book Logit and Probit written by Vani K. Borooah and published by SAGE. This book was released on 2002 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.