Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A General Joint Model For Longitudinal Measurements And Competing Risks Survival Data With Heterogenous Random Effects
Download A General Joint Model For Longitudinal Measurements And Competing Risks Survival Data With Heterogenous Random Effects full books in PDF, epub, and Kindle. Read online A General Joint Model For Longitudinal Measurements And Competing Risks Survival Data With Heterogenous Random Effects ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A General Joint Model for Longitudinal Measurements and Competing Risks Survival Data with Heterogenous Random Effects by : Xin Huang
Download or read book A General Joint Model for Longitudinal Measurements and Competing Risks Survival Data with Heterogenous Random Effects written by Xin Huang and published by . This book was released on 2008 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Joint Models for Longitudinal and Time-to-Event Data by : Dimitris Rizopoulos
Download or read book Joint Models for Longitudinal and Time-to-Event Data written by Dimitris Rizopoulos and published by CRC Press. This book was released on 2012-06-22 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Book Synopsis Joint Modeling of Longitudinal and Time-to-Event Data by : Robert Elashoff
Download or read book Joint Modeling of Longitudinal and Time-to-Event Data written by Robert Elashoff and published by CRC Press. This book was released on 2016-10-04 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Longitudinal studies often incur several problems that challenge standard statistical methods for data analysis. These problems include non-ignorable missing data in longitudinal measurements of one or more response variables, informative observation times of longitudinal data, and survival analysis with intermittently measured time-dependent covariates that are subject to measurement error and/or substantial biological variation. Joint modeling of longitudinal and time-to-event data has emerged as a novel approach to handle these issues. Joint Modeling of Longitudinal and Time-to-Event Data provides a systematic introduction and review of state-of-the-art statistical methodology in this active research field. The methods are illustrated by real data examples from a wide range of clinical research topics. A collection of data sets and software for practical implementation of the joint modeling methodologies are available through the book website. This book serves as a reference book for scientific investigators who need to analyze longitudinal and/or survival data, as well as researchers developing methodology in this field. It may also be used as a textbook for a graduate level course in biostatistics or statistics.
Book Synopsis Bayesian Survival Analysis by : Joseph G. Ibrahim
Download or read book Bayesian Survival Analysis written by Joseph G. Ibrahim and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.
Book Synopsis Nonlinear Models for Repeated Measurement Data by : Marie Davidian
Download or read book Nonlinear Models for Repeated Measurement Data written by Marie Davidian and published by Routledge. This book was released on 2017-11-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Book Synopsis The Frailty Model by : Luc Duchateau
Download or read book The Frailty Model written by Luc Duchateau and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
Book Synopsis Mixed Effects Models for the Population Approach by : Marc Lavielle
Download or read book Mixed Effects Models for the Population Approach written by Marc Lavielle and published by CRC Press. This book was released on 2014-07-14 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects Models Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time. Easy-to-Use Techniques and Tools for Real-World Data Modeling The book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of the EM algorithm (SAEM), for modeling these diverse data types. The book also covers other essential methods, including Markov chain Monte Carlo (MCMC) and importance sampling techniques. The author uses publicly available software tools to illustrate modeling tasks. Methods are implemented in Monolix, and models are visually explored using Mlxplore and simulated using Simulx. Careful Balance of Mathematical Representation and Practical Implementation This book takes readers through the whole modeling process, from defining/creating a parametric model to performing tasks on the model using various mathematical methods. Statisticians and mathematicians will appreciate the rigorous representation of the models and theoretical properties of the methods while modelers will welcome the practical capabilities of the tools. The book is also useful for training and teaching in any field where population modeling occurs.
Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Book Synopsis Issues in Bioengineering and Bioinformatics: 2012 Edition by :
Download or read book Issues in Bioengineering and Bioinformatics: 2012 Edition written by and published by ScholarlyEditions. This book was released on 2013-01-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Bioengineering and Bioinformatics: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Biophotonics. The editors have built Issues in Bioengineering and Bioinformatics: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Biophotonics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Bioengineering and Bioinformatics: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Book Synopsis Linear Mixed Models by : Brady T. West
Download or read book Linear Mixed Models written by Brady T. West and published by CRC Press. This book was released on 2006-11-22 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Book Synopsis Methods and Applications of Longitudinal Data Analysis by : Xian Liu
Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.
Book Synopsis Handbook of Survival Analysis by : John P. Klein
Download or read book Handbook of Survival Analysis written by John P. Klein and published by CRC Press. This book was released on 2016-04-19 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians
Download or read book Survival Analysis written by Xian Liu and published by John Wiley & Sons. This book was released on 2012-06-13 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Book Synopsis Frailty Models in Survival Analysis by : Andreas Wienke
Download or read book Frailty Models in Survival Analysis written by Andreas Wienke and published by CRC Press. This book was released on 2010-07-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.
Book Synopsis The Evaluation of Surrogate Endpoints by : Geert Molenberghs
Download or read book The Evaluation of Surrogate Endpoints written by Geert Molenberghs and published by Springer Science & Business Media. This book was released on 2005-02-28 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the latest research on a sensitive and controversial topic in a professional and well researched manner. Provides practical outlook as well as model guidelines and software tools that should be of interest to people who use the software tools described and those who do not. Related title by Co-author Geert Molenbergh has sold more than 3500 copies world wide. Provides dual viewpoints: from scientists in the industry as well as regulatory authorities.
Book Synopsis Competing Risks and Multistate Models with R by : Jan Beyersmann
Download or read book Competing Risks and Multistate Models with R written by Jan Beyersmann and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.
Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.