Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A First Course In Chaotic Dynamical Systems
Download A First Course In Chaotic Dynamical Systems full books in PDF, epub, and Kindle. Read online A First Course In Chaotic Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A First Course In Chaotic Dynamical Systems by : Robert L. Devaney
Download or read book A First Course In Chaotic Dynamical Systems written by Robert L. Devaney and published by Hachette UK. This book was released on 1992-10-21 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented.Chaotic Dynamical Systems Software, Labs 1–6 is a supplementary laboratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems, it leads to a rich understanding of this emerging field.
Book Synopsis An Introduction To Chaotic Dynamical Systems by : Robert Devaney
Download or read book An Introduction To Chaotic Dynamical Systems written by Robert Devaney and published by CRC Press. This book was released on 2018-03-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
Book Synopsis A First Course in Discrete Dynamical Systems by : Richard A. Holmgren
Download or read book A First Course in Discrete Dynamical Systems written by Richard A. Holmgren and published by Springer Science & Business Media. This book was released on 2012-09-05 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.
Book Synopsis Nonlinear Dynamics and Chaos by : Steven H. Strogatz
Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Book Synopsis Chaos in Dynamical Systems by : Edward Ott
Download or read book Chaos in Dynamical Systems written by Edward Ott and published by Cambridge University Press. This book was released on 2002-08-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.
Book Synopsis Concepts and Results in Chaotic Dynamics: A Short Course by : Pierre Collet
Download or read book Concepts and Results in Chaotic Dynamics: A Short Course written by Pierre Collet and published by Springer Science & Business Media. This book was released on 2007-07-07 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of dynamical systems is a well established field. This book provides a panorama of several aspects of interest to mathematicians and physicists. It collects the material of several courses at the graduate level given by the authors, avoiding detailed proofs in exchange for numerous illustrations and examples. Apart from common subjects in this field, a lot of attention is given to questions of physical measurement and stochastic properties of chaotic dynamical systems.
Book Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman
Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2012-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.
Book Synopsis Introduction to Applied Nonlinear Dynamical Systems and Chaos by : Stephen Wiggins
Download or read book Introduction to Applied Nonlinear Dynamical Systems and Chaos written by Stephen Wiggins and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
Book Synopsis Chaotic Transitions in Deterministic and Stochastic Dynamical Systems by : Emil Simiu
Download or read book Chaotic Transitions in Deterministic and Stochastic Dynamical Systems written by Emil Simiu and published by Princeton University Press. This book was released on 2014-09-08 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.
Book Synopsis A First Course in Dynamics by : Boris Hasselblatt
Download or read book A First Course in Dynamics written by Boris Hasselblatt and published by Cambridge University Press. This book was released on 2003-06-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of dynamical systems has given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introductory text covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. The only prerequisite is a basic undergraduate analysis course. The authors use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
Book Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss
Download or read book Differential Dynamical Systems, Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Book Synopsis Chaotic Dynamics and Fractals by : Michael F. Barnsley
Download or read book Chaotic Dynamics and Fractals written by Michael F. Barnsley and published by Academic Press. This book was released on 2014-05-10 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.
Book Synopsis Dynamical Systems and Chaos by : Henk Broer
Download or read book Dynamical Systems and Chaos written by Henk Broer and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.
Book Synopsis Lectures on Fractal Geometry and Dynamical Systems by : Ya. B. Pesin
Download or read book Lectures on Fractal Geometry and Dynamical Systems written by Ya. B. Pesin and published by American Mathematical Soc.. This book was released on 2009 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.
Book Synopsis An Introduction to Symbolic Dynamics and Coding by : Douglas Lind
Download or read book An Introduction to Symbolic Dynamics and Coding written by Douglas Lind and published by Cambridge University Press. This book was released on 2021-01-21 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symbolic dynamics is a mature yet rapidly developing area of dynamical systems. It has established strong connections with many areas, including linear algebra, graph theory, probability, group theory, and the theory of computation, as well as data storage, statistical mechanics, and $C^*$-algebras. This Second Edition maintains the introductory character of the original 1995 edition as a general textbook on symbolic dynamics and its applications to coding. It is written at an elementary level and aimed at students, well-established researchers, and experts in mathematics, electrical engineering, and computer science. Topics are carefully developed and motivated with many illustrative examples. There are more than 500 exercises to test the reader's understanding. In addition to a chapter in the First Edition on advanced topics and a comprehensive bibliography, the Second Edition includes a detailed Addendum, with companion bibliography, describing major developments and new research directions since publication of the First Edition.
Download or read book Exploring Chaos written by Brian Davies and published by CRC Press. This book was released on 2018-05-04 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents elements of the theory of chaos in dynamical systems in a framework of theoretical understanding coupled with numerical and graphical experimentation. It describes the theory of fractals, focusing on the importance of scaling and ordinary differential equations.
Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl
Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.