Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
121 Number Theory Problems For Mathematics Competitions
Download 121 Number Theory Problems For Mathematics Competitions full books in PDF, epub, and Kindle. Read online 121 Number Theory Problems For Mathematics Competitions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis 250 Problems in Elementary Number Theory by : Wacław Sierpiński
Download or read book 250 Problems in Elementary Number Theory written by Wacław Sierpiński and published by Elsevier Publishing Company. This book was released on 1970 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis 121 NUMBER THEORY PROBLEMS FOR MATHEMATICS COMPETITIONS by : TITU. VENTULLO ANDREESCU (ALESSANDRO.)
Download or read book 121 NUMBER THEORY PROBLEMS FOR MATHEMATICS COMPETITIONS written by TITU. VENTULLO ANDREESCU (ALESSANDRO.) and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Problem-Solving Strategies by : Arthur Engel
Download or read book Problem-Solving Strategies written by Arthur Engel and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
Book Synopsis 102 Combinatorial Problems by : Titu Andreescu
Download or read book 102 Combinatorial Problems written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: "102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Book Synopsis Index to Mathematical Problems, 1980-1984 by : Stanley Rabinowitz
Download or read book Index to Mathematical Problems, 1980-1984 written by Stanley Rabinowitz and published by MathPro Press. This book was released on 1992 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compendium of over 5,000 problems with subject, keyword, author and citation indexes.
Download or read book Awesome Math written by Titu Andreescu and published by John Wiley & Sons. This book was released on 2019-11-13 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Help your students to think critically and creatively through team-based problem solving instead of focusing on testing and outcomes. Professionals throughout the education system are recognizing that standardized testing is holding students back. Schools tend to view children as outcomes rather than as individuals who require guidance on thinking critically and creatively. Awesome Math focuses on team-based problem solving to teach discrete mathematics, a subject essential for success in the STEM careers of the future. Built on the increasingly popular growth mindset, this timely book emphasizes a problem-solving approach for developing the skills necessary to think critically, creatively, and collaboratively. In its current form, math education is a series of exercises: straightforward problems with easily-obtained answers. Problem solving, however, involves multiple creative approaches to solving meaningful and interesting problems. The authors, co-founders of the multi-layered educational organization AwesomeMath, have developed an innovative approach to teaching mathematics that will enable educators to: Move their students beyond the calculus trap to study the areas of mathematics most of them will need in the modern world Show students how problem solving will help them achieve their educational and career goals and form lifelong communities of support and collaboration Encourage and reinforce curiosity, critical thinking, and creativity in their students Get students into the growth mindset, coach math teams, and make math fun again Create lesson plans built on problem based learning and identify and develop educational resources in their schools Awesome Math: Teaching Mathematics with Problem Based Learning is a must-have resource for general education teachers and math specialists in grades 6 to 12, and resource specialists, special education teachers, elementary educators, and other primary education professionals.
Book Synopsis Out of the Labyrinth by : Ellen Kaplan
Download or read book Out of the Labyrinth written by Ellen Kaplan and published by Bloomsbury Publishing USA. This book was released on 2014-02-04 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""Out of the Labyrinth" rejoices in the serious play of mathematics and explains how to think about math as a truly common pursuit... full of fun and full of the wisdom of a lifetime of teaching..."-- Barry Mazur, Gerhard Gade University Professory, Harvard University.
Book Synopsis Additive Number Theory by : David Chudnovsky
Download or read book Additive Number Theory written by David Chudnovsky and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
Book Synopsis Continued Fractions: From Analytic Number Theory to Constructive Approximation by : Bruce C. Berndt
Download or read book Continued Fractions: From Analytic Number Theory to Constructive Approximation written by Bruce C. Berndt and published by American Mathematical Soc.. This book was released on 1999 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the contributions from the international conference held at the University of Missouri at Columbia, marking Professor Lange's 70th birthday and his retirement from the university. The principal purpose of the conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between a large number of fields-from pure mathematics to mathematical physics and approximation theory. Evident in this work is the widespread influence of continued fractions in a broad range of areas of mathematics and physics, including number theory, elliptic functions, Padé approximations, orthogonal polynomials, moment problems, frequency analysis, and regularity properties of evolution equations. Different areas of current research are represented. The lectures at the conference and the contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.
Download or read book Number Theory written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
Book Synopsis Excursions in Calculus by : Robert M. Young
Download or read book Excursions in Calculus written by Robert M. Young and published by American Mathematical Soc.. This book was released on 1992-10-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the rich and elegant interplay between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
Author :Bell Telephone Laboratories. Libraries and Information Systems Center Publisher : ISBN 13 : Total Pages :508 pages Book Rating :4.3/5 (91 download)
Book Synopsis Bell Laboratories Talks and Papers by : Bell Telephone Laboratories. Libraries and Information Systems Center
Download or read book Bell Laboratories Talks and Papers written by Bell Telephone Laboratories. Libraries and Information Systems Center and published by . This book was released on 1980 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Elementary Number Theory: Primes, Congruences, and Secrets by : William Stein
Download or read book Elementary Number Theory: Primes, Congruences, and Secrets written by William Stein and published by Springer Science & Business Media. This book was released on 2008-10-28 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Book Synopsis Ramanujan’s Notebooks by : Bruce C. Berndt
Download or read book Ramanujan’s Notebooks written by Bruce C. Berndt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the years 1903-1914, Ramanujan worked in almost complete isolation in India. During this time, he recorded most of his mathematical discoveries without proofs in notebooks. Although many of his results were already found in the literature, most were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit Ramanujan's notebooks, but they never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the fourth of five volumes devoted to the editing of Ramanujan's notebooks. Parts I, II, and III, published in 1985, 1989, and 1991, contain accounts of Chapters 1-21 in Ramanujan's second notebook as well as a description of his quarterly reports. This is the first of two volumes devoted to proving the results found in the unorganized portions of the second notebook and in the third notebook. The author also proves those results in the first notebook that are not found in the second or third notebooks. For those results that are known, references in the literature are provided. Otherwise, complete proofs are given. Over 1/2 of the results in the notebooks are new. Many of them are so startling and different that there are no results akin to them in the literature.
Book Synopsis Contests in Higher Mathematics by : Gabor J. Szekely
Download or read book Contests in Higher Mathematics written by Gabor J. Szekely and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well.
Book Synopsis Topics in Number Theory by : Amir Hossein Parvardi
Download or read book Topics in Number Theory written by Amir Hossein Parvardi and published by . This book was released on 2018-09-11 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This challenging book contains fundamentals of elementary number theory as well as a huge number of solved problems and exercises. The authors, who are experienced mathematical olympiad teachers, have used numerous solved problems and examples in the process of presenting the theory. Another point which has made this book self-contained is that the authors have explained everything from the very beginning, so that the reader does not need to use other sources for definitions, theorems, or problems. On the other hand, Topics in Number Theory introduces and develops advanced subjects in number theory which may not be found in other similar number theory books; for instance, chapter 5 presents Thue's lemma, Vietta jumping, and lifting the exponent lemma (among other things) which are unique in the sense that no other book covers all such topics in one place. As a result, this book is suitable for both beginners and advanced-level students in olympiad number theory, math teachers, and in general whoever is interested in learning number theory.For more information about the book, please refer to https://TopicsInNumberTheory.com.
Download or read book Putnam and Beyond written by Răzvan Gelca and published by Springer. This book was released on 2017-09-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quad ratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and gradu ate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons.